Chapter 6 Relationship between the Stress Tensor and the Strain Tensor in Elasticity (K) and between the Curvature and the Stress Energy Tensor (κ) in General Relativity in Weak Gravitational Fields

2021 ◽  
pp. 79-84
2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Ming-Zhi Chung ◽  
Yu-tin Huang ◽  
Jung-Wook Kim

Abstract In this paper, we demonstrate that at leading order in post Minkowskian (PM) expansion, the stress-energy tensor of Kerr-Newman black hole can be recovered to all orders in spin from three sets of minimal coupling: the electric and gravitational minimal coupling for higher-spin particles, and the “minimal coupling” for massive spin-2 decay. These couplings are uniquely defined from kinematic consideration alone. This is shown by extracting the classical piece of the one-loop stress-energy tensor form factor, which we provide a basis that is valid to all orders in spin. The 1 PM stress tensor, and the metric in the harmonic gauge, is then recovered from the classical spin limit of the form factor.


Author(s):  
Roman Baudrimont

This paper is to summarize the involvement of the stress energy tensor in the study of fluid mechanics. In the first part we will see the implication that carries the stress energy tensor in the framework of general relativity. In the second part, we will study the stress energy tensor under the mechanics of perfect fluids, allowing us to lead third party in the case of Newtonian fluids, and in the last part we will see that it is possible to define space-time as a no-Newtonian fluids.


Author(s):  
Roman Baudrimont

This paper is to summarize the involvement of the stress energy tensor in the study of fluid mechanics. In the first part we will see the implication that carries the stress energy tensor in the framework of general relativity. In the second part, we will study the stress energy tensor under the mechanics of perfect fluids, allowing us to lead third party in the case of Newtonian fluids, and in the last part we will see that it is possible to define space-time as a no-Newtonian fluids.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
D. D. Pawar ◽  
V. R. Patil ◽  
S. N. Bayaskar

This paper deals with the cosmological models for the static spherically symmetric spacetime for perfect fluid with anisotropic stress energy tensor in general relativity by introducing the generating functions g(r) and w(r) and also discussing their physical and geometric properties.


2008 ◽  
Vol 17 (03n04) ◽  
pp. 399-423 ◽  
Author(s):  
THOMAS P. SOTIRIOU ◽  
STEFANO LIBERATI ◽  
VALERIO FARAONI

Already in the 1970s there where attempts to present a set of ground rules, sometimes referred to as a theory of gravitation theories, which theories of gravity should satisfy in order to be considered viable in principle and, therefore, interesting enough to deserve further investigation. From this perspective, an alternative title of this paper could be "Why Are We Still Unable to Write a Guide on How to Propose Viable Alternatives to General Relativity?". Attempting to answer this question, it is argued here that earlier efforts to turn qualitative statements, such as the Einstein equivalence principle, into quantitative ones, such as the metric postulates, stand on rather shaky ground — probably contrary to popular belief — as they appear to depend strongly on particular representations of the theory. This includes ambiguities in the identification of matter and gravitational fields, dependence of frequently used definitions (such as those of the stress–energy tensor or classical vacuum) on the choice of variables, etc. Various examples are discussed and possible approaches to this problem are pointed out. In the course of this study, several common misconceptions related to the various forms of the equivalence principle, the use of conformal frames and equivalence between theories are clarified.


Sign in / Sign up

Export Citation Format

Share Document