scholarly journals A scientific note on the distribution of Africanized honey bees and Varroa destructor in feral honey bee populations in California

Apidologie ◽  
2002 ◽  
Vol 33 (6) ◽  
pp. 581-582 ◽  
Author(s):  
Walter M. Boyce ◽  
Esther S. Rubin ◽  
Chantal S. O'Brien
Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 216
Author(s):  
Matthieu Guichard ◽  
Benoît Droz ◽  
Evert W. Brascamp ◽  
Adrien von Virag ◽  
Markus Neuditschko ◽  
...  

For the development of novel selection traits in honey bees, applicability under field conditions is crucial. We thus evaluated two novel traits intended to provide resistance against the ectoparasitic mite Varroa destructor and to allow for their straightforward implementation in honey bee selection. These traits are new field estimates of already-described colony traits: brood recapping rate (‘Recapping’) and solidness (‘Solidness’). ‘Recapping’ refers to a specific worker characteristic wherein they reseal a capped and partly opened cell containing a pupa, whilst ‘Solidness’ assesses the percentage of capped brood in a predefined area. According to the literature and beekeepers’ experiences, a higher recapping rate and higher solidness could be related to resistance to V. destructor. During a four-year field trial in Switzerland, the two resistance traits were assessed in a total of 121 colonies of Apis mellifera mellifera. We estimated the repeatability and the heritability of the two traits and determined their phenotypic correlations with commonly applied selection traits, including other putative resistance traits. Both traits showed low repeatability between different measurements within each year. ‘Recapping’ had a low heritability (h2 = 0.04 to 0.05, depending on the selected model) and a negative phenotypic correlation to non-removal of pin-killed brood (r = −0.23). The heritability of ‘Solidness’ was moderate (h2 = 0.24 to 0.25) and did not significantly correlate with resistance traits. The two traits did not show an association with V. destructor infestation levels. Further research is needed to confirm the results, as only a small number of colonies was evaluated.


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e36285 ◽  
Author(s):  
Coby van Dooremalen ◽  
Lonne Gerritsen ◽  
Bram Cornelissen ◽  
Jozef J. M. van der Steen ◽  
Frank van Langevelde ◽  
...  

2015 ◽  
Vol 54 (4) ◽  
pp. 321-327 ◽  
Author(s):  
Ciro Invernizzi ◽  
Ignacio Zefferino ◽  
Estela Santos ◽  
Lucía Sánchez ◽  
Yamandú Mendoza

1999 ◽  
Vol 22 (3) ◽  
pp. 321-323 ◽  
Author(s):  
Geraldo Moretto ◽  
Leonidas João de Mello Jr.

Different levels of infestation with the mite Varroa jacobsoni have been observed in the various Apis mellifera races. In general, bees of European races are more susceptible to the mite than African honey bees and their hybrids. In Brazil honey bee colonies are not treated against the mite, though apparently both climate and bee race influence the mite infestation. Six mixed colonies were made with Italian and Africanized honey bees. The percentage infestation by this parasite was found to be significantly lower in adult Africanized (1.69 ± 0.44) than Italian bees (2.79 ± 0.65). This ratio was similar to that found in Mexico, even though the Africanized bees tested there had not been in contact with varroa, compared to more than 20 years of the coexistence in Brazil. However, mean mite infestation in Brazil on both kinds of bees was only about a third of that found in Mexico.


EDIS ◽  
2007 ◽  
Vol 2007 (7) ◽  
Author(s):  
William H. Kern, Jr.

ENY-838, a 4-page illustrated fact sheet by William H. Kern, Jr., provides useful information for keeping pests out of bird and mammal nest boxes, especially the Africanized honey bee, which has become established in Florida, and sets up colonies in smaller and lower locations which may displace wildlife that uses these locations as dens. Includes recommendations, what to do if bees have invaded your nest box, and references. Published by the UF Department of Entomology and Nematology, January 2007. ENY-838/IN682: Keeping Africanized Honey Bees Out of Wildlife Nest Boxes (ufl.edu)


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Desiderato Annoscia ◽  
Gennaro Di Prisco ◽  
Andrea Becchimanzi ◽  
Emilio Caprio ◽  
Davide Frizzera ◽  
...  

AbstractThe neonicotinoid Clothianidin has a negative impact on NF-κB signaling and on immune responses controlled by this transcription factor, which can boost the proliferation of honey bee parasites and pathogens. This effect has been well documented for the replication of deformed wing virus (DWV) induced by Clothianidin in honey bees bearing an asymptomatic infection. Here, we conduct infestation experiments of treated bees to show that the immune-suppression exerted by Clothianidin is associated with an enhanced fertility of the parasitic mite Varroa destructor, as a possible consequence of a higher feeding efficiency. A conceptual model is proposed to describe the synergistic interactions among different stress agents acting on honey bees.


2020 ◽  
Vol 52 (1) ◽  
Author(s):  
Matthieu Guichard ◽  
Vincent Dietemann ◽  
Markus Neuditschko ◽  
Benjamin Dainat

Abstract Background In spite of the implementation of control strategies in honey bee (Apis mellifera) keeping, the invasive parasitic mite Varroa destructor remains one of the main causes of colony losses in numerous countries. Therefore, this parasite represents a serious threat to beekeeping and agro-ecosystems that benefit from the pollination services provided by honey bees. To maintain their stocks, beekeepers have to treat their colonies with acaricides every year. Selecting lineages that are resistant to infestations is deemed to be a more sustainable approach. Review Over the last three decades, numerous selection programs have been initiated to improve the host–parasite relationship and to support honey bee survival in the presence of the parasite without the need for acaricide treatments. Although resistance traits have been included in the selection strategy of honey bees, it has not been possible to globally solve the V. destructor problem. In this study, we review the literature on the reasons that have potentially limited the success of such selection programs. We compile the available information to assess the relevance of selected traits and the potential environmental effects that distort trait expression and colony survival. Limitations to the implementation of these traits in the field are also discussed. Conclusions Improving our knowledge of the mechanisms underlying resistance to V. destructor to increase trait relevance, optimizing selection programs to reduce environmental effects, and communicating selection outcomes are all crucial to efforts aiming at establishing a balanced relationship between the invasive parasite and its new host.


2019 ◽  
Author(s):  
Francisco Posada-Florez ◽  
Anna K. Childers ◽  
Matthew C. Heerman ◽  
Noble I. Egekwu ◽  
Steven C. Cook ◽  
...  

AbstractHoney bees, the primary managed insect pollinator, suffer considerable losses due to Deformed wing virus (DWV), an RNA virus vectored by the mite Varroa destructor. Mite vectoring has resulted in the emergence of virulent DWV variants. The basis for such changes in DWV is poorly understood. Most importantly, it remains unclear whether replication of DWV occurs in the mite. In this study, we exposed Varroa mites to DWV type A via feeding on artificially infected honey bees. A significant, 357-fold increase in DWV load was observed in these mites after 2 days. However, after 8 additional days of passage on honey bee pupae with low viral loads, the DWV load dropped by 29-fold. This decrease significantly reduced the mites’ ability to transmit DWV to honey bees. Notably, negative-strand DWV RNA, which could indicate viral replication, was detected only in mites collected from pupae with high DWV levels but not in the passaged mites. We also found that Varroa mites contain honey bee mRNAs, consistent with the acquisition of honey bee cells which would additionally contain DWV replication complexes with negative-strand DWV RNA. We propose that transmission of DWV type A by Varroa mites occurs in a non-propagative manner.


Sign in / Sign up

Export Citation Format

Share Document