scholarly journals The effects of adult small hive beetles, Aethina tumida (Coleoptera: Nitidulidae), on nests and flight activity of Cape and European honey bees (Apis mellifera)

Apidologie ◽  
2003 ◽  
Vol 34 (4) ◽  
pp. 399-408 ◽  
Author(s):  
James D. Ellis ◽  
Randall Hepburn ◽  
Keith S. Delaplane ◽  
Peter Neumann ◽  
Patti J. Elzen
Apidologie ◽  
2004 ◽  
Vol 35 (4) ◽  
pp. 389-396 ◽  
Author(s):  
James D. Ellis ◽  
Randall Hepburn ◽  
Patti J. Elzen

2020 ◽  
Vol 113 (6) ◽  
pp. 3032-3034
Author(s):  
Bram Cornelissen ◽  
Peter Neumann ◽  
James D Ellis

Abstract The small hive beetle, Aethina tumida Murray, is an invasive pest that has spread globally. Western honey bees, Apis mellifera Linnaeus (Hymenoptera: Apidae), are considered the most important host and infestations can lead to collapse of colonies. Larvae feed on honey, pollen, and brood inside the hive and leave the hive as postfeeding wandering larvae to pupate in the surrounding soil. Other host species include bumble bees, stingless bees, and solitary bees, all of which can facilitate small hive beetle reproduction and are used for greenhouse crop pollination worldwide. Here, we investigated if small hive beetles can complete their life cycle when soil is absent by pupating in plant root-supporting substrates commonly used in greenhouses. Wandering small hive beetle larvae were introduced into containers with coconut fiber, perlite, a mixture of both and stone wool substrates to investigate pupation success and development time. Sand was used as control substrate. In all but one substrate (perlite), small hive beetles developed into adults equally well as they did in the sand. Development time ranged between 23 and 37 d and was not different from that of the control. We showed that small hive beetles can pupate in greenhouse substrates. This could constitute a problem for greenhouse pollination as well as it could facilitate small hive beetle survival in areas which otherwise would be deemed unsuitable or marginal environments for small hive beetles to become established. Our study highlights the opportunistic nature of the small hive beetle as an invasive species.


Author(s):  
Sean Bresnahan ◽  
Mehmet Döke ◽  
Tugrul Giray ◽  
Christina Grozinger

Faced with adverse conditions, such as winter in temperate regions or hot and dry conditions in tropical regions, many insect species enter a state of diapause, a period of dormancy associated with a reduction or arrest of physical activity, development, and reproduction. Changes in common physiological pathways underlie diapause phenotypes in different insect species. However, most transcriptomic studies of diapause have not simultaneously evaluated and compared expression patterns in different tissues. Honey bees (Apis mellifera) represent a unique model system to study the mechanisms underpinning diapause. In winter, honey bees exhibit a classic diapause phenotype, with reduced metabolic activity, increased physiological nutritional resources, and altered hormonal profiles. However, winter bees actively heat their colony by vibrating their wing muscles; thus, this tissue is not quiescent. Here, we evaluated the transcriptional profiles of flight muscle tissue and fat body tissue (involved in nutrient storage, metabolism and immune function) of winter bees. We also evaluated two behavioral phenotypes of summer bees: nurses, which exhibit high nutritional stores and low flight activity, and foragers, which exhibit low nutritional stores and high flight activity. We found winter bees and nurses have similar fat body transcriptional profiles compared to foragers, whereas winter bees and foragers have similar flight muscle transcriptional profiles compared to nurses. Additionally, differentially expressed genes were enriched in diapause-related GO terms. Thus, honey bees exhibit tissue-specific transcriptional profiles associated with diapause, laying the groundwork for future studies evaluating the mechanisms, evolution, and consequences of this tissue-specific regulation.


2018 ◽  
Vol 166 (7) ◽  
pp. 528-534 ◽  
Author(s):  
Bridget O. Bobadoye ◽  
Ayuka T. Fombong ◽  
Nkoba Kiatoko ◽  
Raina Suresh ◽  
Peter E. A. Teal ◽  
...  

2020 ◽  
Vol 59 (4) ◽  
pp. 539-545
Author(s):  
Karsten Stief ◽  
Bram Cornelissen ◽  
James D Ellis ◽  
Marc O Schäfer

Author(s):  
Sean Bresnahan ◽  
Mehmet Döke ◽  
Tugrul Giray ◽  
Christina Grozinger

Faced with adverse conditions, such as winter in temperate regions or hot and dry conditions in tropical regions, many insect species enter a state of diapause, a period of dormancy associated with a reduction or arrest of physical activity, development, and reproduction. Changes in common physiological pathways underlie diapause phenotypes in different insect species. However, most transcriptomic studies of diapause have not simultaneously evaluated and compared expression patterns in different tissues. Honey bees (Apis mellifera) represent a unique model system to study the mechanisms underpinning diapause. In winter, honey bees exhibit a classic diapause phenotype, with reduced metabolic activity, increased physiological nutritional resources, and altered hormonal profiles. However, winter bees actively heat their colony by vibrating their wing muscles; thus, this tissue is not quiescent. Here, we evaluated the transcriptional profiles of flight muscle tissue and fat body tissue (involved in nutrient storage, metabolism and immune function) of winter bees. We also evaluated two behavioral phenotypes of summer bees: nurses, which exhibit high nutritional stores and low flight activity, and foragers, which exhibit low nutritional stores and high flight activity. We found winter bees and nurses have similar fat body transcriptional profiles compared to foragers, whereas winter bees and foragers have similar flight muscle transcriptional profiles compared to nurses. Additionally, differentially expressed genes were enriched in diapause-related GO terms. Thus, honey bees exhibit tissue-specific transcriptional profiles associated with diapause, laying the groundwork for future studies evaluating the mechanisms, evolution, and consequences of this tissue-specific regulation.


Sign in / Sign up

Export Citation Format

Share Document