small hive beetles
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Anna Papach ◽  
Rammohan Balusu ◽  
Geoffrey R. Williams ◽  
Henry Y. Fadamiro ◽  
Peter Neumann

Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 751
Author(s):  
Anna Papach ◽  
Federico Cappa ◽  
Rita Cervo ◽  
Leonardo Dapporto ◽  
Rammohan Balusu ◽  
...  

Cuticular hydrocarbons (CHCs) cover insects’ bodies and play important roles in chemical communication, including nestmate recognition, for social insects. To enter colonies of a social host species, parasites may acquire host-specific CHCs or covertly maintain their own CHC profile by lowering its quantity. However, the chemical profile of small hive beetles (SHBs), Aethina tumida, which are parasites of honey bee, Apis mellifera, colonies, and other bee nests, is currently unknown. Here, adults of SHB and honey bee host workers were collected from the same field colonies and their CHC profiles were analysed using GC-MS. The chemical profiles of field-sampled SHBs were also compared with those of host-naive beetles reared in the laboratory. Laboratory-reared SHBs differed in their CHC profiles from field-sampled ones, which showed a more similar, but ten-fold lower, generic host CHC profile compared to host workers. While the data confirm colony-specific CHCs of honey bee workers, the profile of field-collected SHBs was not colony-specific. Adult SHBs often commute between different host colonies, thereby possibly preventing the acquisition of a colony-specific CHC profiles. An ester was exclusive to both groups of SHBs and might constitute an intraspecific recognition cue. Our data suggest that SHBs do not use any finely tuned chemical strategy to conceal their presence inside host colonies and instead probably rely on their hard exoskeleton and defence behaviours.


2021 ◽  
Vol 33 (1) ◽  
pp. 101242
Author(s):  
Zakia A. Jamal ◽  
Hossam F. Abou-Shaara ◽  
Samina Qamer ◽  
Mashael Alhumaidi Alotaibi ◽  
Khalid Ali Khan ◽  
...  

2020 ◽  
pp. jeb.234807
Author(s):  
Zoë Langlands ◽  
Esther E. du Rand ◽  
Karl Crailsheim ◽  
Abdullahi A. Yusuf ◽  
Christian W. W. Pirk

The honeybee nest parasite Aethina tumida (small hive beetle), uses behavioural mimicry to induce trophallactic feeding from its honeybee hosts. Small hive beetles are able to induce honeybee workers to share the carbohydrate–rich contents of their crops, but it is not clear whether the beetles are able to induce to workers to feed them the protein-rich hypopharyngeal glandular secretions fed to the queen, larvae and other nest mates. Protein is a limiting macronutrient in an insect's diet, essential for survival, growth and fecundity. Honeybees obtain protein from pollen, which is consumed and digested by nurse bees. They then distribute the protein to the rest of the colony in the form of hypopharyngeal gland secretions. Using 14C-phenylalanine as a qualitative marker for protein transfer, we show that small hive beetles successfully induce worker bees to feed them the protein-rich secretions of their hypopharyngeal glands during trophallaxis, and that females are more successful than males in inducing the transfer of these protein-rich secretions. Furthermore, behavioural observations demonstrated that female beetles do not preferentially interact with a specific age cohort of bees when soliciting food, but males tend to be more discriminate and avoids the more aggressive and active older bees.


2020 ◽  
Vol 113 (6) ◽  
pp. 3032-3034
Author(s):  
Bram Cornelissen ◽  
Peter Neumann ◽  
James D Ellis

Abstract The small hive beetle, Aethina tumida Murray, is an invasive pest that has spread globally. Western honey bees, Apis mellifera Linnaeus (Hymenoptera: Apidae), are considered the most important host and infestations can lead to collapse of colonies. Larvae feed on honey, pollen, and brood inside the hive and leave the hive as postfeeding wandering larvae to pupate in the surrounding soil. Other host species include bumble bees, stingless bees, and solitary bees, all of which can facilitate small hive beetle reproduction and are used for greenhouse crop pollination worldwide. Here, we investigated if small hive beetles can complete their life cycle when soil is absent by pupating in plant root-supporting substrates commonly used in greenhouses. Wandering small hive beetle larvae were introduced into containers with coconut fiber, perlite, a mixture of both and stone wool substrates to investigate pupation success and development time. Sand was used as control substrate. In all but one substrate (perlite), small hive beetles developed into adults equally well as they did in the sand. Development time ranged between 23 and 37 d and was not different from that of the control. We showed that small hive beetles can pupate in greenhouse substrates. This could constitute a problem for greenhouse pollination as well as it could facilitate small hive beetle survival in areas which otherwise would be deemed unsuitable or marginal environments for small hive beetles to become established. Our study highlights the opportunistic nature of the small hive beetle as an invasive species.


2020 ◽  
Vol 60 (1) ◽  
pp. 108-110
Author(s):  
Yuanzhen Liu ◽  
Wensu Han ◽  
Jinglin Gao ◽  
Songkun Su ◽  
Alexis Beaurepaire ◽  
...  

2020 ◽  
Vol 21 (13) ◽  
pp. 4582
Author(s):  
Yuanzhen Liu ◽  
Alexis Beaurepaire ◽  
Curtis W. Rogers ◽  
Dawn Lopez ◽  
Jay D. Evans ◽  
...  

Olfaction is key to many insects. Odorant receptors (ORs) stand among the key chemosensory receptors mediating the detection of pheromones and kairomones. Small hive beetles (SHBs), Aethina tumida, are parasites of social bee colonies and olfactory cues are especially important for host finding. However, how interactions with their hosts may have shaped the evolution of ORs in the SHB remains poorly understood. Here, for the first time, we analyzed the evolution of SHB ORs through phylogenetic and positive selection analyses. We then tested the expression of selected OR genes in antennae, heads, and abdomens in four groups of adult SHBs: colony odor-experienced/-naive males and females. The results show that SHBs experienced both OR gene losses and duplications, thereby providing a first understanding of the evolution of SHB ORs. Additionally, three candidate ORs potentially involved in host finding and/or chemical communication were identified. Significantly different downregulations of ORs between the abdomens of male and female SHBs exposed to colony odors may reflect that these expression patterns might also reflect other internal events, e.g., oviposition. Altogether, these results provide novel insights into the evolution of SHB ORs and provide a valuable resource for analyzing the function of key genes, e.g., for developing biological control. These results will also help in understanding the chemosensory system in SHBs and other beetles.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1100 ◽  
Author(s):  
Daniel Bisrat ◽  
Chuleui Jung

Small hive beetle (Aethina tumida Murray), indigenous to Africa, has spread to other parts of the world where has become a threat to the honeybee industry. In the present study, insecticidal properties (contact, fumigant, and repellent toxicities) of three main constituents derived from Trachyspermum ammi (L.) Sprague ex Turrill fruits essential oil were evaluated against adult small hive beetles under laboratory conditions. The Hydrodistillation of T. ammi fruits, grown in Ethiopia, yielded a pale yellow essential oil (3.5% v/w) with a strong aromatic odor. Analyses by gas chromatography-mass spectrometry identified twenty-two compounds that accounted for 98.68% of the total essential oil. The essential oil was dominated by monoterpenoids, comprising γ-terpinene (32.72%), p-cymene (27.92%), and thymol (24.36%). The essential oil showed strong contact and fumigation toxicities against the small hive beetle adults, with a LD50 value of 66.64 µg/adult and a LC50 value of 89.03 mg/L air, respectively. Among the main constituents, thymol was the most toxic component found in both contact (LD50 = 41.79 µg/adult) and fumigation (LC50 = 52.66 mg/L air) toxicities. The other two components, γ-terpinene and p-cymene, were less effective in both contact and fumigant toxicities testing. The results showed that T. ammi essential oil and thymol could serve as potential alternatives to synthetic insecticides for the control of small hive beetle adults.


Sign in / Sign up

Export Citation Format

Share Document