scholarly journals Numerical solution of an inverse initial boundary value problem for the wave equation in the presence of conductivity imperfections of small volume

2010 ◽  
Vol 17 (4) ◽  
pp. 1016-1034
Author(s):  
Mark Asch ◽  
Marion Darbas ◽  
Jean-Baptiste Duval

2016 ◽  
Vol 10 (4) ◽  
pp. 285-290 ◽  
Author(s):  
Svyatoslav Litynskyy ◽  
Yuriy Muzychuk ◽  
Anatoliy Muzychuk

Abstract We consider a numerical solution of the initial-boundary value problem for the homogeneous wave equation with the Neumann condition using the retarded double layer potential. For solving an equivalent time-dependent integral equation we combine the Laguerre transform (LT) in the time domain with the boundary elements method. After LT we obtain a sequence of boundary integral equations with the same integral operator and functions in right-hand side which are determined recurrently. An error analysis for the numerical solution in accordance with the parameter of boundary discretization is performed. The proposed approach is demonstrated on the numerical solution of the model problem in unbounded three-dimensional spatial domain.



Author(s):  
Shkelqim Hajrulla ◽  
Leonard Bezati ◽  
Fatmir Hoxha

We introduce a class of logarithmic wave equation. We study the global existence of week solution for this class of equation. We deal with the initial boundary value problem of this class. Using the Galerkin method and the Gross logarithmic Sobolev inequality we establish the main theorem of existence of week solution for this class of equation arising from Q-Ball Dynamic in particular.



2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Fosheng Wang ◽  
Chengqiang Wang

We are concerned in this paper with the initial boundary value problem for a quasilinear viscoelastic wave equation which is subject to a nonlinear action, to a nonlinear frictional damping, and to a Kelvin-Voigt damping, simultaneously. By utilizing a carefully chosen Lyapunov functional, we establish first by the celebrated convexity argument a finite time blow-up criterion for the initial boundary value problem in question; we prove second by an a priori estimate argument that some solutions to the problem exists globally if the nonlinearity is “weaker,” in a certain sense, than the frictional damping, and if the viscoelastic damping is sufficiently strong.



Sign in / Sign up

Export Citation Format

Share Document