scholarly journals The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system

2017 ◽  
Vol 23 (3) ◽  
pp. 851-868 ◽  
Author(s):  
Lars Diening ◽  
Eduard Feireisl ◽  
Yong Lu
2019 ◽  
Vol 347 (10) ◽  
pp. 677-684 ◽  
Author(s):  
Amit Acharya ◽  
Roger Fosdick
Keyword(s):  

2021 ◽  
pp. 1-21
Author(s):  
Claudia Gariboldi ◽  
Takéo Takahashi

We consider an optimal control problem for the Navier–Stokes system with Navier slip boundary conditions. We denote by α the friction coefficient and we analyze the asymptotic behavior of such a problem as α → ∞. More precisely, we prove that if we take an optimal control for each α, then there exists a sequence of optimal controls converging to an optimal control of the same optimal control problem for the Navier–Stokes system with the Dirichlet boundary condition. We also show the convergence of the corresponding direct and adjoint states.


2012 ◽  
Vol 75 (4) ◽  
pp. 2486-2498 ◽  
Author(s):  
Hongxing Zhao ◽  
Zheng-an Yao
Keyword(s):  

1982 ◽  
Vol 120 ◽  
pp. 155-183 ◽  
Author(s):  
Jon Lee

We have investigated a sequence of dynamical systems corresponding to spherical truncations of the incompressible three-dimensional Navier-Stokes equations in Fourier space. For lower-order truncated systems up to the spherical truncation of wavenumber radius 4, it is concluded that the inviscid Navier-Stokes system will develop mixing (and a fortiori ergodicity) on the constant energy-helicity surface, and also isotropy of the covariance spectral tensor. This conclusion is, however, drawn not directly from the mixing definition but from the observation that one cannot evolve the trajectory numerically much beyond several characteristic corre- lation times of the smallest eddy owing to the accumulation of round-off errors. The limited evolution time is a manifestation of trajectory instability (exponential orbit separation) which underlies not only mixing, but also the stronger dynamical charac- terization of positive Kolmogorov entropy (K-system).


Sign in / Sign up

Export Citation Format

Share Document