perforated domains
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 31)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 12 (03) ◽  
Author(s):  
Mogtaba Mohammed ◽  
Waseem Asghar Khan

The goal of this paper is to present new results on homogenization and correctors for stochastic linear hyperbolic equations in periodically perforated domains with homogeneous Neumann conditions on the holes. The main tools are the periodic unfolding method, energy estimates, probabilistic and deterministic compactness results. The findings of this paper are stochastic counterparts of the celebrated work [D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains, Port. Math. (N.S.) 63 (2006) 467–496]. The convergence of the solution of the original problem to a homogenized problem with Dirichlet condition has been shown in suitable topologies. Homogenization and convergence of the associated energies results recover the work in [M. Mohammed and M. Sango, Homogenization of Neumann problem for hyperbolic stochastic partial differential equations in perforated domains, Asymptot. Anal. 97 (2016) 301–327]. In addition to that, we obtain corrector results.


Author(s):  
Richard M. Höfer ◽  
Karina Kowalczyk ◽  
Sebastian Schwarzacher

We consider the homogenization limit of the compressible barotropic Navier–Stokes equations in a three-dimensional domain perforated by periodically distributed identical particles. We study the regime of particle sizes and distances such that the volume fraction of particles tends to zero but their resistance density tends to infinity. Assuming that the Mach number is decreasing with a certain rate, the rescaled velocity and pressure of the microscopic system converges to the solution of an effective equation which is given by Darcy’s law. The range of sizes of particles we consider is exactly the same which leads to Darcy’s law in the homogenization limit of incompressible fluids. Unlike previous results for the Darcy regime we estimate the deficit related to the pressure approximation via the Bogovskiĭ operator. This allows for more flexible estimates of the pressure in Lebesgue and Sobolev spaces and allows to proof convergence results for all barotropic exponents [Formula: see text].


Author(s):  
A. Giunti

AbstractWe consider the homogenization of a Poisson problem or a Stokes system in a randomly punctured domain with Dirichlet boundary conditions. We assume that the holes are spherical and have random centres and radii. We impose that the average distance between the balls is of size $$\varepsilon $$ ε and their average radius is $$\varepsilon ^{\alpha }$$ ε α , $$\alpha \in (1; 3)$$ α ∈ ( 1 ; 3 ) . We prove that, as in the periodic case (Allaire, G., Arch. Rational Mech. Anal. 113(113):261–298, 1991), the solutions converge to the solution of Darcy’s law (or its scalar analogue in the case of Poisson). In the same spirit of (Giunti, A., Höfer, R., Ann. Inst. H. Poincare’- An. Nonl. 36(7):1829–1868, 2019; Giunti, A., Höfer, R., Velàzquez, J.J.L., Comm. PDEs 43(9):1377–1412, 2018), we work under minimal conditions on the integrability of the random radii. These ensure that the problem is well-defined but do not rule out the onset of clusters of holes.


Computation ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 75
Author(s):  
Valentin Alekseev ◽  
Maria Vasilyeva ◽  
Uygulaana Kalachikova ◽  
Eric T. Chung

Problems in perforated media are complex and require high resolution grid construction to capture complex irregular perforation boundaries leading to the large discrete system of equations. In this paper, we develop a multiscale model reduction technique based on the Discontinuous Galerkin Generalized Multiscale Finite Element Method (DG-GMsFEM) for problems in perforated domains with non-homogeneous boundary conditions on perforations. This method implies division of the perforated domain into several non-overlapping subdomains constructing local multiscale basis functions for each. We use two types of multiscale basis functions, which are constructed by imposing suitable non-homogeneous boundary conditions on subdomain boundary and perforation boundary. The construction of these basis functions contains two steps: (1) snapshot space construction and (2) solution of local spectral problems for dimension reduction in the snapshot space. The presented method is used to solve different model problems: elliptic, parabolic, elastic, and thermoelastic equations with non-homogeneous boundary conditions on perforations. The concepts for coarse grid construction and definition of the local domains are presented and investigated numerically. Numerical results for two test cases with homogeneous and non-homogeneous boundary conditions are included, as well. For the case with homogeneous boundary conditions on perforations, results are shown using only local basis functions with non-homogeneous boundary condition on subdomain boundary and homogeneous boundary condition on perforation boundary. Both types of basis functions are needed in order to obtain accurate solutions, and they are shown for problems with non-homogeneous boundary conditions on perforations. The numerical results show that the proposed method provides good results with a significant reduction of the system size.


2021 ◽  
Vol 15 ◽  
pp. 158
Author(s):  
P.I. Kogut ◽  
T.N. Rudyanova

We study boundary properties of one class of periodic functions as $\varepsilon \rightarrow 0$, where $\varepsilon$ is a period of periodically perforated domain. We show that their weak limit is the homothetic mean value of such functions.


Sign in / Sign up

Export Citation Format

Share Document