homogenization problems
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 17)

H-INDEX

17
(FIVE YEARS 2)

Analysis ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Klaas Hendrik Poelstra ◽  
Ben Schweizer ◽  
Maik Urban

Abstract In periodic homogenization problems, one considers a sequence ( u η ) η {(u^{\eta})_{\eta}} of solutions to periodic problems and derives a homogenized equation for an effective quantity u ^ {\hat{u}} . In many applications, u ^ {\hat{u}} is the weak limit of ( u η ) η {(u^{\eta})_{\eta}} , but in some applications u ^ {\hat{u}} must be defined differently. In the homogenization of Maxwell’s equations in periodic media, the effective magnetic field is given by the geometric average of the two-scale limit. The notion of a geometric average has been introduced in [G. Bouchitté, C. Bourel and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris 347 2009, 9–10, 571–576]; it associates to a curl-free field Y ∖ Σ ¯ → ℝ 3 {Y\setminus\overline{\Sigma}\to\mathbb{R}^{3}} , where Y is the periodicity cell and Σ an inclusion, a vector in ℝ 3 {\mathbb{R}^{3}} . In this article, we extend previous definitions to more general inclusions, in particular inclusions that are not compactly supported in the periodicity cell. The physical relevance of the geometric average is demonstrated by various results, e.g., a continuity property of limits of tangential traces.


Author(s):  
Anna B. Kudimova ◽  
Andrey V. Nasedkin

The spatial problem of calculating the effective permittivity of two-component composite, consisting of a base material filling a spherical layer and one spherical inclusion, is considered. The homogenization problem is solved by effective moduli method with calculation of the energy characteristics in the composite medium and in its individual phases. In the obtained solution, the limit transitions are made for two extreme cases: pores or inclusions with zero dielectric constant and conductive inclusions with infinitely high dielectric constant. The solutions of these problems are compared with the solutions of homogenization problems for a medium with void and for a medium with conductive inclusion boundary. In problems with one basic material, the properties of inclusions were taken into account only by the corresponding boundary conditions on the interface. It is shown that calculations of the effective permittivity by energy criterion give correct results in all the cases considered, while the calculations by the average permittivity for a composite with a conductive inclusion boundary may be erroneous.


2020 ◽  
Vol 10 (05) ◽  
pp. 2050018
Author(s):  
Andrey Nasedkin ◽  
Mohamed Elsayed Nassar

This paper concerns the homogenization problems for porous piezocomposites with infinitely thin metalized pore surfaces. To determine the effective properties, we used the effective moduli method and the finite element approaches, realized in the ANSYS package. As a simple model of the representative volume, we applied a unit cell of porous piezoceramic material in the form of a cube with one spherical pore. We modeled metallization by introducing an additional layer of material with very large permittivity coefficients along the pore boundary. Then we simulated the nonuniform polarization field around the pore. For taking this effect into account, we previously solved the electrostatic problem for a porous dielectric material with the same geometric structure. From this problem, we obtained the polarization field in the porous piezomaterial; after that, we modified the material properties of the finite elements from dielectric to piezoelectric with element coordinate systems whose corresponding axes rotated along the polarization vectors. As a result, we obtained the porous unit cell of an inhomogeneously polarized piezoceramic matrix. From the solutions of these homogenization problems, we observed that the examined porous piezoceramics composite with metalized pore boundaries has more extensive effective transverse and shear piezomoduli, and effective dielectric constants compared to the conventional porous piezoceramics. The analysis also showed that the effect of the polarization field inhomogeneity is insignificant on the ordinary porous piezoceramics; however, it is more significant on the porous piezoceramics with metalized pore surfaces.


2020 ◽  
Vol 54 (4) ◽  
pp. 1221-1257 ◽  
Author(s):  
Yves Capdeboscq ◽  
Timo Sprekeler ◽  
Endre Süli

We use uniform W2,p estimates to obtain corrector results for periodic homogenization problems of the form A(x/ε):D2uε = f subject to a homogeneous Dirichlet boundary condition. We propose and rigorously analyze a numerical scheme based on finite element approximations for such nondivergence-form homogenization problems. The second part of the paper focuses on the approximation of the corrector and numerical homogenization for the case of nonuniformly oscillating coefficients. Numerical experiments demonstrate the performance of the scheme.


Sign in / Sign up

Export Citation Format

Share Document