scholarly journals On a two-phase Serrin-type problem and its numerical computation

2020 ◽  
Vol 26 ◽  
pp. 65
Author(s):  
Lorenzo Cavallina ◽  
Toshiaki Yachimura

We consider an overdetermined problem of Serrin-type with respect to an operator in divergence form with piecewise constant coefficients. We give sufficient condition for unique solvability near radially symmetric configurations by means of a perturbation argument relying on shape derivatives and the implicit function theorem. This problem is also treated numerically, by means of a steepest descent algorithm based on a Kohn–Vogelius functional.

2020 ◽  
Vol 21 (01) ◽  
pp. 2150002
Author(s):  
Yuliya Mishura ◽  
Kostiantyn Ralchenko ◽  
Mounir Zili ◽  
Eya Zougar

We introduce a fractional stochastic heat equation with second-order elliptic operator in divergence form, having a piecewise constant diffusion coefficient, and driven by an infinite-dimensional fractional Brownian motion. We characterize the fundamental solution of its deterministic part, and prove the existence and the uniqueness of its solution.


1992 ◽  
Vol 35 (1) ◽  
pp. 136-144 ◽  
Author(s):  
Hong-Ming Yin

AbstractThis paper deals with the Stefan-type problem with a zone of coexistence of both phases. We formulate the problem in the enthalpy form and show that the interfaces between the liquid and the mushy, the mushy and the solid phase are smooth. Our approach is to study the structures of the level sets of the solution via Sard's Lemma and the implicit function theorem.


1998 ◽  
Vol 12 (25) ◽  
pp. 2599-2617 ◽  
Author(s):  
Guo-Hong Yang ◽  
Yishi Duan

In the 4-dimensional gauge field theory of dislocation and disclination continuum, the topological current structure and the topological quantization of disclinations are approached. Using the implicit function theorem and Taylor expansion, the origin and bifurcation theories of disclinations are detailed in the neighborhoods of limit points and bifurcation points, respectively. The branch solutions at the limit points and the different directions of all branch curves at 1-order and 2-order degenerated points are calculated. It is pointed out that an original disclination point can split into four disclinations at one time at most. Since the disclination current is identically conserved, the total topological quantum numbers of these branched disclinations will remain constant during their origin and bifurcation processes. Furthermore, one can see the fact that the origin and bifurcation of disclinations are not gradual changes but sudden changes. As some applications of the proposal theory, two examples are presented in the paper.


2002 ◽  
Vol 15 (1) ◽  
pp. 1-21
Author(s):  
G. George Yin ◽  
Jiongmin Yong

This work is concerned with a class of hybrid LQG (linear quadratic Gaussian) regulator problems modulated by continuous-time Markov chains. In contrast to the traditional LQG models, the systems have both continuous dynamics and discrete events. In lieu of a model with constant coefficients, these coefficients vary with time and exhibit piecewise constant behavior. At any time t, the system follows a stochastic differential equation in which the coefficients take one of the m possible configurations where m is usually large. The system may jump to any of the possible configurations at random times. Further, the control weight in the cost functional is allowed to be indefinite. To reduce the complexity, the Markov chain is formulated as singularly perturbed with a small parameter. Our effort is devoted to solving the limit problem when the small parameter tends to zero via the framework of weak convergence. Although the limit system is still modulated by a Markov chain, it has a much smaller state space and thus, much reduced complexity.


Sign in / Sign up

Export Citation Format

Share Document