steepest descent algorithm
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1197
Author(s):  
Roberto Araya

The steepest descent (or ascent) algorithm is one of the most widely used algorithms in Science, Technology, Engineering, and Mathematics (STEM). However, this powerful mathematical tool is neither taught nor even mentioned in K12 education. We study whether it is feasible for elementary school students to learn this algorithm, while also aligning with the standard school curriculum. We also look at whether it can be used to create enriching activities connected to children’s real-life experiences, thus enhancing the integration of STEM and fostering Computational Thinking. To address these questions, we conducted an empirical study in two phases. In the first phase, we tested the feasibility with teachers. In a face-to-face professional development workshop with 457 mathematics teachers actively participating using an online platform, we found that after a 10-min introduction they could successfully apply the algorithm and use it in a couple of models. They were also able to complete two complex and novel tasks: selecting models and adjusting the parameters of a model that uses the steepest descent algorithm. In a second phase, we tested the feasibility with 90 fourth graders from 3 low Socioeconomic Status (SES) schools. Using the same introduction and posing the same questions, we found that they were able to understand the algorithm and successfully complete the tasks on the online platform. Additionally, we found that close to 75% of the students completed the two complex modeling tasks and performed similarly to the teachers.


Author(s):  
Roberto Araya

The Steepest Descent (or Ascent) algorithm is one of the most widely used algorithms in Science, Technology, Engineering, and Mathematics (STEM). However, this powerful mathematical tool is neither taught nor even mentioned in K12 education. We study whether it is feasible for elementary school students to learn this algorithm, while also aligning with the standard school curriculum. We also look at whether it can be used to create enriching activities connected to children’s real-life experiences, thus enhancing the integration of STEM and fostering Computational Thinking. To address these questions, we conducted an empirical study in two phases. In the first phase, we tested the feasibility with teachers. In a face-to-face professional development work-shop with 457 mathematics teachers actively participating using an online platform, we found that after a 10-minute introduction they could successfully apply the algorithm and use it in a couple of models. They were also able to complete two complex and novel tasks: selecting models and adjusting the parameters of a model that uses the steepest descent algorithm. In a second phase, we tested the feasibility with 90 fourth graders from 3 low Socioeconomic Status (SES) schools. Using the same introduction and posing the same questions, we found that they were able to understand the algorithm and successfully complete the tasks on the online platform. Additionally, we found that close to 75% of the students completed the two complex modeling tasks and performed similarly to the teachers.


2021 ◽  
Vol 36 (2) ◽  
pp. 190-198
Author(s):  
Samuel Kingston ◽  
Hunter Ellis ◽  
Mashad Saleh ◽  
Evan Benoit ◽  
Ayobami Edun ◽  
...  

In this paper, we present a method for estimating complex impedances using reflectometry and a modified steepest descent inversion algorithm. We simulate spread spectrum time domain reflectometry (SSTDR), which can measure complex impedances on energized systems for an experimental setup with resistive and capacitive loads. A parametric function, which includes both a misfit function and stabilizer function, is created. The misfit function is a least squares estimate of how close the model data matches observed data. The stabilizer function prevents the steepest descent algorithm from becoming unstable and diverging. Steepest descent iteratively identifies the model parameters that minimize the parametric function. We validate the algorithm by correctly identifying the model parameters (capacitance and resistance) associated with simulated SSTDR data, with added 3 dB white Gaussian noise. With the stabilizer function, the steepest descent algorithm estimates of the model parameters are bounded within a specified range. The errors for capacitance (220pF to 820pF) and resistance (50 Ω to 270 Ω) are < 10%, corresponding to a complex impedance magnitude |R +1/jωC| of 53 Ω to 510 Ω.


Author(s):  
Roberto Araya

The Steepest Descent (or Ascent) algorithm is one of the most widely used algorithms in Science, Technology, Engineering, and Mathematics (STEM). However, this powerful mathematical tool is neither taught nor even mentioned in K12 education. We study whether it is feasible for elementary school students to learn this algorithm, while also aligning with the standard school curriculum. We also look at whether it can be used to create enriching activities connected to children’s real-life experiences, thus enhancing the integration of STEM and fostering Computational Thinking. To address these questions, we conducted an empirical study in two phases. In the first phase, we tested the feasibility with teachers. In a face-to-face professional development work-shop with 457 mathematics teachers actively participating using an online platform, we found that after a 10-minute introduction they could successfully apply the algorithm and use it in a couple of models. They were also able to complete two complex and novel tasks: selecting models and adjusting the parameters of a model that uses the steepest descent algorithm. In a second phase, we tested the feasibility with 90 fourth graders from 3 low Socioeconomic Status (SES) schools. Using the same introduction and posing the same questions, we found that they were able to understand the algorithm and successfully complete the tasks on the online platform. Additionally, we found that close to 75% of the students completed the two complex modeling tasks and performed similarly to the teachers.


2020 ◽  
Vol 26 ◽  
pp. 65
Author(s):  
Lorenzo Cavallina ◽  
Toshiaki Yachimura

We consider an overdetermined problem of Serrin-type with respect to an operator in divergence form with piecewise constant coefficients. We give sufficient condition for unique solvability near radially symmetric configurations by means of a perturbation argument relying on shape derivatives and the implicit function theorem. This problem is also treated numerically, by means of a steepest descent algorithm based on a Kohn–Vogelius functional.


Sign in / Sign up

Export Citation Format

Share Document