scholarly journals Mean field approach to stochastic control with partial information

Author(s):  
Alain Bensoussan ◽  
Phillip Yam

In our present article, we follow our way of developing mean field type control theory in our earlier works [4], by first introducing the Bellman and then master equations, the system of Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck (FP) equations, and then tackling them by looking for the semi-explicit solution for the linear quadratic case, especially with an arbitrary initial distribution; such a problem, being left open for long, has not been specifically dealt with in the earlier literature, such as [3, 13], which only tackled the linear quadratic setting with Gaussian initial distributions. Thanks to the effective mean-field theory, we propose a solution to this long standing problem of the general non-Gaussian case. Besides, our problem considered here can be reduced to the model in [2], which is fundamentally different from our present proposed framework.

Geophysics ◽  
2009 ◽  
Vol 74 (2) ◽  
pp. WA77-WA92 ◽  
Author(s):  
Thomas J. Browaeys ◽  
Sergey Fomel

Cycles in sedimentary strata exist at different scales and can be described by fractal statistics. We use von Kármán’s autocorrelation function to model heterogeneities in sonic logs from a clastic reservoir and propose a nonlinear parameter estimation. Our method is validated using synthetic signals. When applied to real sonic logs, it extracts the fractal properties of high spatial frequencies and one dominant cycle between 2.5 and [Formula: see text]. Results demonstrate non-Gaussian and antipersistent statistics of sedimentary layers. We have derived an analytical formula for the scattering attenuation of scalar waves by 3D isotropic fractal heterogeneities using the mean field theory. Penetration of waves exhibits a high-frequency cutoff sensitive to heterogeneity size. Therefore, shear waves can be attenuated more than compressional waves because of their shorter wavelength.


Risks ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 90
Author(s):  
Jean-Pierre Fouque ◽  
Zhaoyu Zhang

We study a toy model of linear-quadratic mean field game with delay. We “lift” the delayed dynamic into an infinite dimensional space, and recast the mean field game system which is made of a forward Kolmogorov equation and a backward Hamilton-Jacobi-Bellman equation. We identify the corresponding master equation. A solution to this master equation is computed, and we show that it provides an approximation to a Nash equilibrium of the finite player game.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Xiaolan Chen ◽  
Qingfeng Zhu

This paper is concerned with a kind of nonzero sum differential game of mean-field backward stochastic differential equations with jump (MF-BSDEJ), in which the coefficient contains not only the state process but also its marginal distribution. Moreover, the cost functional is also of mean-field type. It is required that the control is adapted to a subfiltration of the filtration generated by the underlying Brownian motion and Poisson random measure. We establish a necessary condition in the form of maximum principle with Pontryagin’s type for open-loop Nash equilibrium point of this type of partial information game and then give a verification theorem which is a sufficient condition for Nash equilibrium point. The theoretical results are applied to study a partial information linear-quadratic (LQ) game.


2020 ◽  
Vol 26 ◽  
pp. 41
Author(s):  
Tianxiao Wang

This article is concerned with linear quadratic optimal control problems of mean-field stochastic differential equations (MF-SDE) with deterministic coefficients. To treat the time inconsistency of the optimal control problems, linear closed-loop equilibrium strategies are introduced and characterized by variational approach. Our developed methodology drops the delicate convergence procedures in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. When the MF-SDE reduces to SDE, our Riccati system coincides with the analogue in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. However, these two systems are in general different from each other due to the conditional mean-field terms in the MF-SDE. Eventually, the comparisons with pre-committed optimal strategies, open-loop equilibrium strategies are given in details.


1993 ◽  
Vol 3 (3) ◽  
pp. 385-393 ◽  
Author(s):  
W. Helfrich

2000 ◽  
Vol 61 (17) ◽  
pp. 11521-11528 ◽  
Author(s):  
Sergio A. Cannas ◽  
A. C. N. de Magalhães ◽  
Francisco A. Tamarit

Sign in / Sign up

Export Citation Format

Share Document