mean field game
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 117)

H-INDEX

18
(FIVE YEARS 6)

Author(s):  
Daniel Lacker ◽  
Agathe Soret

We study a class of linear-quadratic stochastic differential games in which each player interacts directly only with its nearest neighbors in a given graph. We find a semiexplicit Markovian equilibrium for any transitive graph, in terms of the empirical eigenvalue distribution of the graph’s normalized Laplacian matrix. This facilitates large-population asymptotics for various graph sequences, with several sparse and dense examples discussed in detail. In particular, the mean field game is the correct limit only in the dense graph case, that is, when the degrees diverge in a suitable sense. Although equilibrium strategies are nonlocal, depending on the behavior of all players, we use a correlation decay estimate to prove a propagation of chaos result in both the dense and sparse regimes, with the sparse case owing to the large distances between typical vertices. Without assuming the graphs are transitive, we show also that the mean field game solution can be used to construct decentralized approximate equilibria on any sufficiently dense graph sequence.


2021 ◽  
Author(s):  
Meng Wang ◽  
Lixin Li ◽  
Wensheng Lin ◽  
Baoguo Wei ◽  
Wei Chen ◽  
...  
Keyword(s):  

Author(s):  
Sarah Perrin ◽  
Mathieu Laurière ◽  
Julien Pérolat ◽  
Matthieu Geist ◽  
Romuald Élie ◽  
...  

We present a method enabling a large number of agents to learn how to flock. This problem has drawn a lot of interest but requires many structural assumptions and is tractable only in small dimensions. We phrase this problem as a Mean Field Game (MFG), where each individual chooses its own acceleration depending on the population behavior. Combining Deep Reinforcement Learning (RL) and Normalizing Flows (NF), we obtain a tractable solution requiring only very weak assumptions. Our algorithm finds a Nash Equilibrium and the agents adapt their velocity to match the neighboring flock’s average one. We use Fictitious Play and alternate: (1) computing an approximate best response with Deep RL, and (2) estimating the next population distribution with NF. We show numerically that our algorithm can learn multi-group or high-dimensional flocking with obstacles.


Author(s):  
René Carmona ◽  
Peiqi Wang

We develop a probabilistic approach to continuous-time finite state mean field games. Based on an alternative description of continuous-time Markov chains by means of semimartingales and the weak formulation of stochastic optimal control, our approach not only allows us to tackle the mean field of states and the mean field of control at the same time, but also extends the strategy set of players from Markov strategies to closed-loop strategies. We show the existence and uniqueness of Nash equilibrium for the mean field game as well as how the equilibrium of a mean field game consists of an approximative Nash equilibrium for the game with a finite number of players under different assumptions of structure and regularity on the cost functions and transition rate between states.


Sign in / Sign up

Export Citation Format

Share Document