scholarly journals Can Satellite Remote Sensing be Applied in Geological Mapping in Tropics?

2018 ◽  
Vol 35 ◽  
pp. 02004 ◽  
Author(s):  
Janusz Magiera

Remote sensing (RS) techniques are based on spectral data registered by RS scanners as energy reflected from the Earth’s surface or emitted by it. In “geological” RS the reflectance (or emittence) should come from rock or sediment. The problem in tropical and subtropical areas is a dense vegetation. Spectral response from the rocks and sediments is gathered only from the gaps among the trees and shrubs. Images of high resolution are appreciated here, therefore. New generation of satellites and scanners (Digital Globe WV2, WV3 and WV4) yield imagery of spatial resolution of 2 m and up to 16 spectral bands (WV3). Images acquired by Landsat (TM, ETM+, OLI) and Sentinel 2 have good spectral resolution too (6–12 bands in visible and infrared) and, despite lower spatial resolution (10–60 m of pixel size) are useful in extracting lithological information too. Lithological RS map may reveal good precision (down to a single rock or outcrop of a meter size). Supplemented with the analysis of Digital Elevation Model and high resolution ortophotomaps (Google Maps, Bing etc.) allows for quick and cheap mapping of unsurveyed areas.

OSEANA ◽  
2018 ◽  
Vol 43 (4) ◽  
Author(s):  
Marindah Yulia Iswari ◽  
Kasih Anggraini

DEMNAS : NATIONAL DIGITAL ELEVATION MODEL FOR COASTAL APPLICATION. DEM is a digital data which contain information about elevation. In Indonesia, DEM can be generated from elevation points or contours in RBI (Rupabumi Indonesia). DEM can be performed to research of coastal application i.e. inundation or tsunami. DEM can help to analyze vulnerability or evacuation zone for coastal hazards. DEMNAS is one product of BIG (Geospatial Information Agency) which consist of elevation data from remote sensing images. DEMNAS data has not been widely used and is still being developed but DEMNAS has an advantage of spatial resolution. DEMNAS has spatial resolution 0.27 arc-second, which is bigger than the spatial resolution of global DEM.


2019 ◽  
Vol 20 (1) ◽  
pp. 9
Author(s):  
Fitriani Agustin ◽  
Sutikno Bronto

Remote sensing technology greatly helps to identify the various of volcano features, including active, old and ancient volcanoes. The aim of this  paper is intended to introduce various volcanic features in the Gede Volcano Complexs (GVC) and souronding area; compose volcanostratigraphy; and estimate the history of the volcanoes. The method used is a visual interpretation 9 meters spatial resolution of Digital Elevation Model (DEM) TerraSar-x image. Indonesian Stratigraphy Nomenclature Guide 1996 was implemented in vocanostratigraphy unit classification, involving Arc, Super Brigate, Brigate, Crown and Hummockly. Based on the interpretation the DEM image, volcanostratigraphic unit the Gede Volcano Complex consists of Bregade Masigit (Br. M.), which consists of Joklok (Gm.J.) and Gegerbentang (Gm.G.) Hummocs; Crown Lingkung (Kh.L.) consisting of Pangrango (Gm.P.), Situ Gunung (Gm Sg.), Cikahuripan (Gm.Ck.), Pasir Prahu (Gm.Ph) Hummocs; Gege Crown (Kh.G.), which is located in the east of Lingkung Crown. The Gede Crown consists of Gumuruh humock (Gm.Gh.), Gunung Gede lava flows (LG 1,2,3,4,5), and giant debrise avalances (gv-G). The geological mapping based volcanostratigraphy is very useful for exploration of mineral and energy resources, as well as geological hazards.Keywords : volcanostratigraphy, DEM TerraSar-x image, Gunung Gede Complexs.


2019 ◽  
Vol 20 (1) ◽  
pp. 9
Author(s):  
Fitriani Agustin ◽  
Sutikno Bronto

Remote sensing technology greatly helps to identify the various of volcano features, including active, old and ancient volcanoes. The aim of this  paper is intended to introduce various volcanic features in the Gede Volcano Complexs (GVC) and souronding area; compose volcanostratigraphy; and estimate the history of the volcanoes. The method used is a visual interpretation 9 meters spatial resolution of Digital Elevation Model (DEM) TerraSar-x image. Indonesian Stratigraphy Nomenclature Guide 1996 was implemented in vocanostratigraphy unit classification, involving Arc, Super Brigate, Brigate, Crown and Hummockly. Based on the interpretation the DEM image, volcanostratigraphic unit the Gede Volcano Complex consists of Bregade Masigit (Br. M.), which consists of Joklok (Gm.J.) and Gegerbentang (Gm.G.) Hummocs; Crown Lingkung (Kh.L.) consisting of Pangrango (Gm.P.), Situ Gunung (Gm Sg.), Cikahuripan (Gm.Ck.), Pasir Prahu (Gm.Ph) Hummocs; Gege Crown (Kh.G.), which is located in the east of Lingkung Crown. The Gede Crown consists of Gumuruh humock (Gm.Gh.), Gunung Gede lava flows (LG 1,2,3,4,5), and giant debrise avalances (gv-G). The geological mapping based volcanostratigraphy is very useful for exploration of mineral and energy resources, as well as geological hazards.Keywords : volcanostratigraphy, DEM TerraSar-x image, Gunung Gede Complexs.DOI: 10.33332/jgsm.2019.v20.1.9-16


Spatium ◽  
2020 ◽  
pp. 45-52
Author(s):  
Branislav Bajat ◽  
Ognjen Antonijevic ◽  
Milan Kilibarda ◽  
Aleksandar Sekulic ◽  
Jelena Lukovic ◽  
...  

The assessment of the potential use of renewable energy resources requires reliable and precise data inputs for sustainable energy planning on a regional, national and local scale. In this study, we examine high spatial resolution grids of potential insolation and solar duration in order to determine the location of potential solar power plants in Montenegro. Grids with a 25-m spatial resolution of potential solar radiation and duration were produced based on observational records and publicly available high-resolution digital elevation model provided by the European Environment Agency. These results could be further used for the estimation and selection of a specific location for solar panels. With an average annual potential insolation of 1800 kWh/m? and solar duration of over 2000 h per year for most of its territory, Montenegro is one of the European countries with the highest potential for the development, production, and consumption of solar energy.


2021 ◽  
Vol 13 (13) ◽  
pp. 7291
Author(s):  
Ben Zhang ◽  
Jie Yang ◽  
Yinxia Cao

For the purpose of bioenergy production, biomass cropping on marginal land is an appropriate method. Less consideration has been given to estimating the marginal land in cities at a fine spatial resolution, especially in China. Marginal land within cities has great potential for bioenergy production. Therefore, in this research, the urban marginal land of 20 representative cities of China was estimated by using detailed land-cover and 3D building morphology information derived from Ziyuan-3 high-resolution remote sensing imagery, and ancillary geographical data, including land use, soil type, and digital elevation model data. We then classified the urban marginal land into “vacant land” and “land between buildings”, and further revealed its landscape patterns. Our results showed that: (1) the suitable marginal land area ranged from 17.78 ± 1.66 km2 to 353.48 ± 54.19 km2 among the 20 cities; (2) it was estimated that bioethanol production on marginal land could amount to 0.005–0.13 mT, corresponding to bioenergy of 2.1 × 1013–4.0 × 1014 J for one city; (3) from the landscape viewpoint, the marginal landscape pattern tended to be more fragmented in more developed cities. Our results will help urban planners to reclaim unused urban land and develop distributed bioenergy projects at the city scale.


2018 ◽  
Author(s):  
Giuseppe Amatulli ◽  
Sami Domisch ◽  
Jens Kiesel ◽  
Tushar Sethi ◽  
Dai Yamazaki ◽  
...  

We used the hydrologically corrected Multi-Error- Removed Improved-Terrain Digital Elevation Model at a 3 arc- second (90 m) spatial resolution to derive a seamless, standardized stream network by using GRASS-GIS hydrological modules. We compared the spatial accuracy of the derived stream network with the NHDPlusV2 dataset across the conterminous Unites States. The results demonstrate that spatial accuracy is in the order of 1 pixel displacement compared to the NHDPlusV2 locations, indicating a high level of accuracy. The implemented methodology will be extended to a global scale hydrography in an upcoming project.


Author(s):  
Giuseppe Amatulli ◽  
Sami Domisch ◽  
Jens Kiesel ◽  
Tushar Sethi ◽  
Dai Yamazaki ◽  
...  

We used the hydrologically corrected Multi-Error- Removed Improved-Terrain Digital Elevation Model at a 3 arc- second (90 m) spatial resolution to derive a seamless, standardized stream network by using GRASS-GIS hydrological modules. We compared the spatial accuracy of the derived stream network with the NHDPlusV2 dataset across the conterminous Unites States. The results demonstrate that spatial accuracy is in the order of 1 pixel displacement compared to the NHDPlusV2 locations, indicating a high level of accuracy. The implemented methodology will be extended to a global scale hydrography in an upcoming project.


2019 ◽  
Vol 20 (1) ◽  
pp. 9
Author(s):  
Fitriani Agustin ◽  
Sutikno Bronto

Remote sensing technology greatly helps to identify the various of volcano features, including active, old and ancient volcanoes. The aim of this  paper is intended to introduce various volcanic features in the Gede Volcano Complexs (GVC) and souronding area; compose volcanostratigraphy; and estimate the history of the volcanoes. The method used is a visual interpretation 9 meters spatial resolution of Digital Elevation Model (DEM) TerraSar-x image. Indonesian Stratigraphy Nomenclature Guide 1996 was implemented in vocanostratigraphy unit classification, involving Arc, Super Brigate, Brigate, Crown and Hummockly. Based on the interpretation the DEM image, volcanostratigraphic unit the Gede Volcano Complex consists of Bregade Masigit (Br. M.), which consists of Joklok (Gm.J.) and Gegerbentang (Gm.G.) Hummocs; Crown Lingkung (Kh.L.) consisting of Pangrango (Gm.P.), Situ Gunung (Gm Sg.), Cikahuripan (Gm.Ck.), Pasir Prahu (Gm.Ph) Hummocs; Gege Crown (Kh.G.), which is located in the east of Lingkung Crown. The Gede Crown consists of Gumuruh humock (Gm.Gh.), Gunung Gede lava flows (LG 1,2,3,4,5), and giant debrise avalances (gv-G). The geological mapping based volcanostratigraphy is very useful for exploration of mineral and energy resources, as well as geological hazards.Keywords : volcanostratigraphy, DEM TerraSar-x image, Gunung Gede Complexs.DOI: 10.33332/jgsm.2019.v20.1.9-16


2019 ◽  
Vol 20 (1) ◽  
pp. 9
Author(s):  
Fitriani Agustin ◽  
Sutikno Bronto

Remote sensing technology greatly helps to identify the various of volcano features, including active, old and ancient volcanoes. The aim of this  paper is intended to introduce various volcanic features in the Gede Volcano Complexs (GVC) and souronding area; compose volcanostratigraphy; and estimate the history of the volcanoes. The method used is a visual interpretation 9 meters spatial resolution of Digital Elevation Model (DEM) TerraSar-x image. Indonesian Stratigraphy Nomenclature Guide 1996 was implemented in vocanostratigraphy unit classification, involving Arc, Super Brigate, Brigate, Crown and Hummockly. Based on the interpretation the DEM image, volcanostratigraphic unit the Gede Volcano Complex consists of Bregade Masigit (Br. M.), which consists of Joklok (Gm.J.) and Gegerbentang (Gm.G.) Hummocs; Crown Lingkung (Kh.L.) consisting of Pangrango (Gm.P.), Situ Gunung (Gm Sg.), Cikahuripan (Gm.Ck.), Pasir Prahu (Gm.Ph) Hummocs; Gege Crown (Kh.G.), which is located in the east of Lingkung Crown. The Gede Crown consists of Gumuruh humock (Gm.Gh.), Gunung Gede lava flows (LG 1,2,3,4,5), and giant debrise avalances (gv-G). The geological mapping based volcanostratigraphy is very useful for exploration of mineral and energy resources, as well as geological hazards.Keywords : volcanostratigraphy, DEM TerraSar-x image, Gunung Gede Complexs.


Sign in / Sign up

Export Citation Format

Share Document