scholarly journals Power system steady state calculations using artificial neural networks

2020 ◽  
Vol 216 ◽  
pp. 01102
Author(s):  
Muzaffar Khudayarov ◽  
Nuriddin Normamatov

The power systems steady-state problem are described by a system of nonlinear equations, and for their solution are widely used iterative techniques such as the Newton-Raphson and others. Recently, techniques based on the use of genetic algorithms, the theory of fuzzy sets, artificial neural networks have been applied to solve this problem. In this article feedforward neural networks are used for calculating the steady-state regimes. The modeling results were obtained with the results of calculations using the Newton-Raphson method.

Author(s):  
Jan-Hendrik Menke ◽  
Marcel Dipp ◽  
Zheng Liu ◽  
Chenjie Ma ◽  
Florian Schäfer ◽  
...  

Author(s):  
Marek J. Lefik ◽  
Daniela P. Boso ◽  
Bernhard A. Schrefler

For a steady state convection problem, assuming given concentration field values in a few measurement points and hydraulic head values in the same piezometers, the source of the concentration, and its intensity are deduced using Artificial Neural Networks (ANNs). ANNs are trained with data extracted from Finite Difference (FD) solution of a classical convection problem for small Peclet number. The numerical analysis is exemplified for vanishing, homogeneous and non-homogeneous field of velocity. It is shown that the diffusivity vector can also be identified. The complexity of the problem is discussed for each studied case.


Author(s):  
P. N. Botsaris ◽  
D. Bechrakis ◽  
P. D. Sparis

The intelligent control as fuzzy or artificial is based on either expert knowledge or experimental data and therefore it possesses intrinsic qualities like robustness and ease implementation. Lately, many researchers present studies aim to show that this kind of control can be used in practical applications such as the idle speed control problem in automotive industry. In this study, an estimation of an automobile three-way catalyst performance with artificial neural networks is presented. It may be an alternative approach for an on board diagnostic system (OBD) to predict the catalyst performance. This method was tested using data sets from two kind of catalysts, a brand new and an old one on a laboratory bench at idle speed. The catalyst operation during the “steady state” phase (the phase that the catalyst has reached its operating conditions and works normally) is examined. Further experiments are needed for different catalyst typed before the methods is proposed generally. It consists of 855 elements of catalyst inlet-outlet temperature difference (DT), hydrocarbons (HC), and carbon monoxide (CO) and carbon dioxide (CO2) emissions. The simulation: detects the values of HC, CO, CO2 using the DT as an input to our network forms a neural network. Results showed serious indications that artificial neural networks (or fuzzy logic control laws) could estimate the catalyst performance adequately depending their training process, if certain information about the catalyst system and the inputs and output of such system are known. In this study the “steady state” period experimental results are presented. In this paper the “steady state” period experimental results are presented.


1997 ◽  
Vol 9 (5) ◽  
pp. 1109-1126
Author(s):  
Zhiyu Tian ◽  
Ting-Ting Y. Lin ◽  
Shiyuan Yang ◽  
Shibai Tong

With the progress in hardware implementation of artificial neural networks, the ability to analyze their faulty behavior has become increasingly important to their diagnosis, repair, reconfiguration, and reliable application. The behavior of feedforward neural networks with hard limiting activation function under stuck-at faults is studied in this article. It is shown that the stuck-at-M faults have a larger effect on the network's performance than the mixed stuck-at faults, which in turn have a larger effect than that of stuck-at-0 faults. Furthermore, the fault-tolerant ability of the network decreases with the increase of its size for the same percentage of faulty interconnections. The results of our analysis are validated by Monte-Carlo simulations.


Author(s):  
Eiichi Inohira ◽  
◽  
Hirokazu Yokoi

This paper presents a method to optimally design artificial neural networks with many design parameters using the Design of Experiment (DOE), whose features are efficient experiments using an orthogonal array and quantitative analysis by analysis of variance. Neural networks can approximate arbitrary nonlinear functions. The accuracy of a trained neural network at a certain number of learning cycles depends on both weights and biases and its structure and learning rate. Design methods such as trial-and-error, brute-force approaches, network construction, and pruning, cannot deal with many design parameters such as the number of elements in a layer and a learning rate. Our design method realizes efficient optimization using DOE, and obtains confidence of optimal design through statistical analysis even though trained neural networks very due to randomness in initial weights. We apply our design method three-layer and five-layer feedforward neural networks in a preliminary study and show that approximation accuracy of multilayer neural networks is increased by picking up many more parameters.


Sign in / Sign up

Export Citation Format

Share Document