scholarly journals Back analysis of pile and anchor retaining structure based on BOTDA distributed optical fiber sensing technology

2021 ◽  
Vol 248 ◽  
pp. 01036
Author(s):  
Xin Wang ◽  
Xie Hui Luo ◽  
Wan xue Long ◽  
Bo Jiang

In order to understand the deformation law and internal force distribution characteristics of the pile-anchor retaining structure in deep foundation pit engineering, the stress of the pile-anchor retaining system in the process of foundation pit excavation was tested by using the distributed optical fiber sensing technology of BOTDA. It uses the supporting pile cloth to set up the strain cable to collect the strain from the excavation process to the stability of the foundation pit, which analyzes the stress and internal force distribution. The results show that the overall deformation of the foundation pit is small and in a stable state. It uses the monitoring strain energy to truly reflect the distribution and transmission law of the pile internal force. It is shown that the bending moment is the maximum at the action position of the anchor cable on the pile anchor structure and 2.5m below the bottom of the pit. The design needs to reinforce the construction of such locations. At the same time, the distribution form of earth pressure calculated in reverse is different from the conventional one. When there are multiple rows of prestressed anchor cables, the earth pressure applied on the support is less than the calculated value of classical earth pressure theory. This pile anchor structure design theory and engineering application has reference value.

2019 ◽  
Vol 9 (12) ◽  
pp. 2435 ◽  
Author(s):  
Lei Gao ◽  
Chuan Han ◽  
Zhongquan Xu ◽  
Yingjie Jin ◽  
Jianqiang Yan

In order to study the deformation of bored pile, it is necessary to monitor the strain of the pile. The distributed optical fiber sensing technology realizes the integration of sensing and transmission, which is incomparable with traditional point monitoring method. In this paper, the Brillouin optical time domain reflectometer (BOTDR) distributed optical fiber sensing technology is used to monitor the deformation of the bored pile. The raw data monitored by BOTDR is processed by the wavelet basis function, that can perform noise removal processing. Three different methods of noise removal are chosen. Through the processing, the db5 wavelet is used to decompose the deformation data of bored pile monitored by BOTDR into two layers. The decomposed high-frequency signal is denoised by the Stein-based unbiased risk threshold, rigrsure. The decomposed data is smoothed by the translational mean method, and the final data after denoising and smoothing processing is real and reliable. The results of this study will provide data support for the deformation characteristics of bored pile, and also show the advantages of distributed optical fiber sensing technology.


Measurement ◽  
2018 ◽  
Vol 122 ◽  
pp. 57-65 ◽  
Author(s):  
Liang Ren ◽  
Tao Jiang ◽  
Zi-guang Jia ◽  
Dong-sheng Li ◽  
Chao-lin Yuan ◽  
...  

2019 ◽  
Vol 138 ◽  
pp. 01006
Author(s):  
Maocai Zhao ◽  
Sergey Kudryavtsev ◽  
Semen Bugunov ◽  
Vyacheslav Shemyakin ◽  
Yuliya Bugunova

This paper summarizes the application status of distributed optical fiber sensing technology in the main fields of geotechnical engineering monitoring in China and Far Eastern Russia, including pile foundation engineering, foundation pit engineering, slope engineering, tunnel and bridge engineering monitoring.


Sign in / Sign up

Export Citation Format

Share Document