scholarly journals Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

2018 ◽  
Vol 173 ◽  
pp. 01008
Author(s):  
Vladimir S. Melezhik

We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

2017 ◽  
Vol 19 (17) ◽  
pp. 10843-10853 ◽  
Author(s):  
Alan R. Baggio ◽  
Daniel F. S. Machado ◽  
Valter H. Carvalho-Silva ◽  
Leonardo G. Paterno ◽  
Heibbe Cristhian B. de Oliveira

We developed an adapted theoretical approach based on DFT calculations (B3LYP) and the nuclear Schrödinger equation using the Discrete Variable Representation method to model the interaction of ammonia with metallo-phthalocyanines.


2021 ◽  
Vol 323 ◽  
pp. 14-20
Author(s):  
Naranchimeg Dagviikhorol ◽  
Munkhsaikhan Gonchigsuren ◽  
Lochin Khenmedekh ◽  
Namsrai Tsogbadrakh ◽  
Ochir Sukh

We have calculated the energies of excited states for the He, Li, and Be atoms by the time dependent self-consistent Kohn Sham equation using the Coulomb Wave Function Discrete Variable Representation CWDVR) approach. The CWDVR approach was used the uniform and optimal spatial grid discretization to the solution of the Kohn-Sham equation for the excited states of atoms. Our results suggest that the CWDVR approach is an efficient and precise solutions of excited-state energies of atoms. We have shown that the calculated electronic energies of excited states for the He, Li, and Be atoms agree with the other researcher values.


Sign in / Sign up

Export Citation Format

Share Document