sham equation
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Yuta Hirokawa ◽  
Atsushi Yamada ◽  
Shunsuke Yamada ◽  
Masashi Noda ◽  
Mitsuharu Uemoto ◽  
...  

In the field of optical science, it is becoming increasingly important to observe and manipulate matter at the atomic scale using ultrashort pulsed light. For the first time, we have performed the ab initio simulation solving the Maxwell equation for light electromagnetic fields, the time-dependent Kohn-Sham equation for electrons, and the Newton equation for ions in extended systems. In the simulation, the most time-consuming parts were stencil and nonlocal pseudopotential operations on the electron orbitals as well as fast Fourier transforms for the electron density. Code optimization was thoroughly performed on the Fujitsu A64FX processor to achieve the highest performance. A simulation of amorphous SiO2 thin film composed of more than 10,000 atoms was performed using 27,648 nodes of the Fugaku supercomputer. The simulation achieved excellent time-to-solution with the performance close to the maximum possible value in view of the memory bandwidth bound, as well as excellent weak scalability.


2021 ◽  
Author(s):  
Ying Zhu ◽  
John Herbert

High harmonic spectra for H2 are simulated by solving the time-dependent Kohn-Sham equation in the presence of a strong laser field, using an atom-centered Gaussian representation of the orbitals and a complex absorbing potential to mitigate artifacts associated with the finite extent of the basis functions, such as spurious reflection of the outgoing electronic wave packet. Interference between the outgoing and reflected waves manifests in the Fourier transform of the time-dependent dipole moment function and leads to peak broadening in the high harmonic spectrum as well as the appearance of spurious peaks at energies well above the cutoff energy at which the harmonic progression is expected terminate. We demonstrate that well-resolved spectra can be obtained through the use of an atom-centered absorbing potential. As compared to grid-based algorithms for solving the time-dependent Kohn-Sham equations, the present approach is more readily extendible to larger polyatomic molecules.


2021 ◽  
Vol 323 ◽  
pp. 14-20
Author(s):  
Naranchimeg Dagviikhorol ◽  
Munkhsaikhan Gonchigsuren ◽  
Lochin Khenmedekh ◽  
Namsrai Tsogbadrakh ◽  
Ochir Sukh

We have calculated the energies of excited states for the He, Li, and Be atoms by the time dependent self-consistent Kohn Sham equation using the Coulomb Wave Function Discrete Variable Representation CWDVR) approach. The CWDVR approach was used the uniform and optimal spatial grid discretization to the solution of the Kohn-Sham equation for the excited states of atoms. Our results suggest that the CWDVR approach is an efficient and precise solutions of excited-state energies of atoms. We have shown that the calculated electronic energies of excited states for the He, Li, and Be atoms agree with the other researcher values.


2019 ◽  
Vol 123 (49) ◽  
pp. 10631-10642 ◽  
Author(s):  
Jonas Ku ◽  
Aditya Kamath ◽  
Tucker Carrington ◽  
Sergei Manzhos

2019 ◽  
Vol 205 ◽  
pp. 04023 ◽  
Author(s):  
Mitsuharu Uemoto ◽  
Kazuhiro Yabana ◽  
Shunsuke A. Sato ◽  
Yuta Hirokawa ◽  
Taisuke Boku

We develop a computational approach for ultrafast nano-optics based on first-principles time-dependent density functional theory. Solving Maxwell equations for light propagation and time-dependent Kohn-Sham equation for electron dynamics simultaneously, intense and ultrashort laser pulse interaction with a dielectric nano-structure is described taking full account of nonlinear effects. As an illustrative example, irradiation of a pulsed light on silicon nano-sphere system is presented.


2019 ◽  
Vol 205 ◽  
pp. 01003 ◽  
Author(s):  
Shunsuke Yamada ◽  
Masashi Noda ◽  
Katsuyuki Nobusada ◽  
Kazuhiro Yabana

We develop a first-principles method to simulate the propagation of intense and ultrashort pulsed light in crystalline thin films solving the Maxwell equations for light electromagnetic fields and the time-dependent Kohn-Sham equation for electrons simultaneously using common spatial and temporal grids. As a demonstration, we apply the method to silicon thin films.


Sign in / Sign up

Export Citation Format

Share Document