CLASSICAL ANALOGUES OF THE RPA OPERATORS AND THE VLASOV EQUATION

1987 ◽  
Vol 48 (C2) ◽  
pp. C2-45-C2-49
Author(s):  
J. DA PROVIDÊNCIA
Keyword(s):  

Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter covers the equations governing the evolution of particle distribution and relates the macroscopic thermodynamical quantities to the distribution function. The motion of N particles is governed by 6N equations of motion of first order in time, written in either Hamiltonian form or in terms of Poisson brackets. Thus, as this chapter shows, as the number of particles grows it becomes necessary to resort to a statistical description. The chapter first introduces the Liouville equation, which states the conservation of the probability density, before turning to the Boltzmann–Vlasov equation. Finally, it discusses the Jeans equations, which are the equations obtained by taking various averages over velocities.





2001 ◽  
Vol 159 (2) ◽  
pp. 85-108 ◽  
Author(s):  
E. Caglioti ◽  
S. Caprino ◽  
C. Marchioro ◽  
M. Pulvirenti


1984 ◽  
Vol 27 (3) ◽  
pp. 675 ◽  
Author(s):  
S. H. Kim




2014 ◽  
Vol 34 (6) ◽  
pp. 1731-1740 ◽  
Author(s):  
Hongmei CHI
Keyword(s):  


1989 ◽  
Vol 160 (3) ◽  
pp. 471-481 ◽  
Author(s):  
Ademir E. Santana ◽  
A. Matos Neto ◽  
J.D.M. Vianna
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document