Kinetic theory

Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter covers the equations governing the evolution of particle distribution and relates the macroscopic thermodynamical quantities to the distribution function. The motion of N particles is governed by 6N equations of motion of first order in time, written in either Hamiltonian form or in terms of Poisson brackets. Thus, as this chapter shows, as the number of particles grows it becomes necessary to resort to a statistical description. The chapter first introduces the Liouville equation, which states the conservation of the probability density, before turning to the Boltzmann–Vlasov equation. Finally, it discusses the Jeans equations, which are the equations obtained by taking various averages over velocities.

1993 ◽  
Vol 49 (2) ◽  
pp. 255-270 ◽  
Author(s):  
Jonas Larsson

An action principle for the Vlasov–Maxwell system in Eulerian field variables is presented. Thus the (extended) particle distribution function appears as one of the fields to be freely varied in the action. The Hamiltonian structures of the Vlasov–Maxwell equations and of the reduced systems associated with small-ampliltude perturbation calculations are easily obtained. Previous results for the linearized Vlasov–Maxwell system are generalized. We find the Hermitian structure also when the background is time-dependent, and furthermore we may now also include the case of non-Hamiltonian perturbations within the Hamiltonian-Hermitian context. The action principle for the Vlasov–Maxwell system appears to be suitable for the derivation of reduced dynamical equations by expanding the action in various small parameters.


2016 ◽  
Vol 31 (02n03) ◽  
pp. 1641012 ◽  
Author(s):  
Manuel Hohmann

We generalize the kinetic theory of fluids, in which the description of fluids is based on the geodesic motion of particles, to spacetimes modeled by Finsler geometry. Our results show that Finsler spacetimes are a suitable background for fluid dynamics and that the equation of motion for a collisionless fluid is given by the Liouville equation, as it is also the case for a metric background geometry. We finally apply this model to collisionless dust and a general fluid with cosmological symmetry and derive the corresponding equations of motion. It turns out that the equation of motion for a dust fluid is a simple generalization of the well-known Euler equations.


1971 ◽  
Vol 5 (2) ◽  
pp. 199-210 ◽  
Author(s):  
D. Nunn

The system studied is that of an electrostatic Gaussian wave packet in a cold uniform plasma being excited by a weak resonant beam. To first order in a parameter associated with the weakness of the beam the resonant particle distribution function and resonant particle charge densities are computed.


1971 ◽  
Vol 10 ◽  
pp. 56-72
Author(s):  
George B. Rybicki

AbstractThe statistical mechanics of an isolated self-gravitating system consisting of N uniform mass sheets is considered using both canonical and microcanonical ensembles. The one-particle distribution function is found in closed form. The limit for large numbers of sheets with fixed total mass and energy is taken and is shown to yield the isothermal solution of the Vlasov equation. The order of magnitude of the approach to Vlasov theory is found to be 0(1/N). Numerical results for spatial density and velocity distributions are given.


1994 ◽  
Vol 08 (29) ◽  
pp. 1847-1860 ◽  
Author(s):  
URI BEN-YA’ACOV

Relativistic statistical mechanics should be manifestly Lorentz covariant. In the absence of a Hamiltonian formalism in relativistic dynamics, a different approach which is based on the (Lagrangian) equations of motion is presented. Without any Liouville equation, this approach provides the direct computation of all the reduced n-particle distribution functions. The trajectories in the fully interacting system and ensemble averages are defined with respect to the parameters that fix the trajectories in the interaction-free limit. Irreversibility may emerge from microscopic dynamics due to the choice as to which part of the particles’ history — past or future — contributes to the interaction. Irreversibility is explicitly demonstrated in the evolution of the one-particle distribution function.


1980 ◽  
Vol 45 (3) ◽  
pp. 777-782 ◽  
Author(s):  
Milan Šolc

The establishment of chemical equilibrium in a system with a reversible first order reaction is characterized in terms of the distribution of first passage times for the state of exact chemical equilibrium. The mean first passage time of this state is a linear function of the logarithm of the total number of particles in the system. The equilibrium fluctuations of composition in the system are characterized by the distribution of the recurrence times for the state of exact chemical equilibrium. The mean recurrence time is inversely proportional to the square root of the total number of particles in the system.


Open Physics ◽  
2008 ◽  
Vol 6 (4) ◽  
Author(s):  
Ion Vancea

AbstractWe generalize previous works on the Dirac eigenvalues as dynamical variables of Euclidean gravity and N =1 D = 4 supergravity to on-shell N = 2 D = 4 Euclidean supergravity. The covariant phase space of the theory is defined as the space of the solutions of the equations of motion modulo the on-shell gauge transformations. In this space we define the Poisson brackets and compute their value for the Dirac eigenvalues.


1995 ◽  
Vol 62 (3) ◽  
pp. 685-691 ◽  
Author(s):  
F. Ma ◽  
T. K. Caughey

The coefficients of a linear nonconservative system are arbitrary matrices lacking the usual properties of symmetry and definiteness. Classical modal analysis is extended in this paper so as to apply to systems with nonsymmetric coefficients. The extension utilizes equivalence transformations and does not require conversion of the equations of motion to first-order forms. Compared with the state-space approach, the generalized modal analysis can offer substantial reduction in computational effort and ample physical insight.


2016 ◽  
Vol 25 (04) ◽  
pp. 1630011 ◽  
Author(s):  
Alejandro Corichi ◽  
Irais Rubalcava-García ◽  
Tatjana Vukašinac

In this review, we consider first-order gravity in four dimensions. In particular, we focus our attention in formulations where the fundamental variables are a tetrad [Formula: see text] and a [Formula: see text] connection [Formula: see text]. We study the most general action principle compatible with diffeomorphism invariance. This implies, in particular, considering besides the standard Einstein–Hilbert–Palatini term, other terms that either do not change the equations of motion, or are topological in nature. Having a well defined action principle sometimes involves the need for additional boundary terms, whose detailed form may depend on the particular boundary conditions at hand. In this work, we consider spacetimes that include a boundary at infinity, satisfying asymptotically flat boundary conditions and/or an internal boundary satisfying isolated horizons boundary conditions. We focus on the covariant Hamiltonian formalism where the phase space [Formula: see text] is given by solutions to the equations of motion. For each of the possible terms contributing to the action, we consider the well-posedness of the action, its finiteness, the contribution to the symplectic structure, and the Hamiltonian and Noether charges. For the chosen boundary conditions, standard boundary terms warrant a well posed theory. Furthermore, the boundary and topological terms do not contribute to the symplectic structure, nor the Hamiltonian conserved charges. The Noether conserved charges, on the other hand, do depend on such additional terms. The aim of this manuscript is to present a comprehensive and self-contained treatment of the subject, so the style is somewhat pedagogical. Furthermore, along the way, we point out and clarify some issues that have not been clearly understood in the literature.


Sign in / Sign up

Export Citation Format

Share Document