infinite mass
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 11)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 258 ◽  
pp. 05006
Author(s):  
Miguel Ángel Escobedo

We study the transitions between the different color states of a static quark-antiquark pair, singlet and octet, in a thermal medium. This is done non-perturbatively exploiting the infinite mass limit of QCD. This study is interesting because it can be used for future developments within the framework of Effective Field Theories (EFTs) and because it can be combined with other techniques, like lattice QCD or AdS/CFT, to gain non-perturbative information about the evolution of quarkonium in a medium. We also study the obtained expressions in the large Nc limit. This allows us to learn lessons that are useful to simplify phenomenological models of quarkonium in a plasma.


2020 ◽  
Vol 65 (11) ◽  
pp. 1002
Author(s):  
V. Pastukhov

The properties of a dilute Bose gas with the non-Gaussian quenched disorder are analyzed. Being more specific, we have considered a system of bosons immersed in the classical bath consisting of the non-interacting particles with infinite mass. Making use of perturbation theory up to the second order, we have studied the impact of environment on the ground-state thermodynamic and superfluid characteristics of the Bose component.


2020 ◽  
Vol 93 (9) ◽  
Author(s):  
Alexander Filusch ◽  
Holger Fehske

Abstract We address the electronic properties of quantum dots in the two-dimensional α − 𝒯3 lattice when subjected to a perpendicular magnetic field. Implementing an infinite mass boundary condition, we first solve the eigenvalue problem for an isolated quantum dot in the low-energy, long-wavelength approximation where the system is described by an effective Dirac-like Hamiltonian that interpolates between the graphene (pseudospin 1/2) and Dice (pseudospin 1) limits. Results are compared to a full numerical (finite-mass) tight-binding lattice calculation. In a second step we analyse charge transport through a contacted α − 𝒯3 quantum dot in a magnetic field by calculating the local density of states and the conductance within the kernel polynomial and Landauer-Büttiker approaches. Thereby the influence of a disordered environment is discussed as well. Graphical abstract


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Kevin Leyden ◽  
Mihir Sen ◽  
Bill Goodwine

This paper introduces mechanical networks as a tool for modeling complex unidirectional vibrations. Networks of this type have branches containing massless linear springs and dampers, with masses at the nodes. Tree and ladder configurations are examples demonstrating that the overall dynamics of infinite systems can be represented using implicitly defined integro-differential operators. Results from the proposed models compare well to numerical results from finite systems, so this approach may have advantages over high-order differential equations.


2019 ◽  
Vol 109 (8) ◽  
pp. 1805-1825 ◽  
Author(s):  
Ulrich Linden ◽  
David Mitrouskas

Sign in / Sign up

Export Citation Format

Share Document