scholarly journals Finite element quasi-interpolation and best approximation

2017 ◽  
Vol 51 (4) ◽  
pp. 1367-1385 ◽  
Author(s):  
Alexandre Ern ◽  
Jean-Luc Guermond

This paper introduces a quasi-interpolation operator for scalar- and vector-valued finite element spaces constructed on affine, shape-regular meshes with some continuity across mesh interfaces. This operator gives optimal estimates of the best approximation error in any Lp-norm assuming regularity in the fractional Sobolev spaces Wr,p, where p ∈ [ 1,∞ ] and the smoothness index r can be arbitrarily close to zero. The operator is stable in L1, leaves the corresponding finite element space point-wise invariant, and can be modified to handle homogeneous boundary conditions. The theory is illustrated on H1-, H(curl)- and H(div)-conforming spaces.

2013 ◽  
Vol 13 (4) ◽  
pp. 495-502 ◽  
Author(s):  
Harry Yserentant

Abstract. We present some new error estimates for the eigenvalues and eigenfunctions obtained by the Rayleigh–Ritz method, the common variational method to solve eigenproblems. The errors are bounded in terms of the error of the best approximation of the eigenfunction under consideration by functions in the ansatz space. In contrast to the classical theory, the approximation error of eigenfunctions other than the given one does not enter into these estimates. The estimates are based on a bound for the norm of a certain projection operator, e.g., in finite element methods for second order eigenvalue problems, the H1-norm of the L2-projection onto the finite element space.


1998 ◽  
Vol 58 (3) ◽  
pp. 505-512 ◽  
Author(s):  
Michael Revers

In the present paper we consider the approximation of |x|α on [−1, 1] by interpolating polynomials and we establish upper bounds for the approximation error. It turns out that these bounds, apart from the constants, are of the best possible order. We compare our results with estimates for the best approximation, established by Bernstein.


2021 ◽  
Vol 47 (6) ◽  
Author(s):  
Mario Kapl ◽  
Giancarlo Sangalli ◽  
Thomas Takacs

AbstractWe present a novel family of C1 quadrilateral finite elements, which define global C1 spaces over a general quadrilateral mesh with vertices of arbitrary valency. The elements extend the construction by Brenner and Sung (J. Sci. Comput. 22(1-3), 83-118, 2005), which is based on polynomial elements of tensor-product degree p ≥ 6, to all degrees p ≥ 3. The proposed C1 quadrilateral is based upon the construction of multi-patch C1 isogeometric spaces developed in Kapl et al. (Comput. Aided Geometr. Des. 69, 55–75 2019). The quadrilateral elements possess similar degrees of freedom as the classical Argyris triangles, developed in Argyris et al. (Aeronaut. J. 72(692), 701–709 1968). Just as for the Argyris triangle, we additionally impose C2 continuity at the vertices. In contrast to Kapl et al. (Comput. Aided Geometr. Des. 69, 55–75 2019), in this paper, we concentrate on quadrilateral finite elements, which significantly simplifies the construction. We present macro-element constructions, extending the elements in Brenner and Sung (J. Sci. Comput. 22(1–3), 83–118 2005), for polynomial degrees p = 3 and p = 4 by employing a splitting into 3 × 3 or 2 × 2 polynomial pieces, respectively. We moreover provide approximation error bounds in $L^{\infty }$ L ∞ , L2, H1 and H2 for the piecewise-polynomial macro-element constructions of degree p ∈{3,4} and polynomial elements of degree p ≥ 5. Since the elements locally reproduce polynomials of total degree p, the approximation orders are optimal with respect to the mesh size. Note that the proposed construction combines the possibility for spline refinement (equivalent to a regular splitting of quadrilateral finite elements) as in Kapl et al. (Comput. Aided Geometr. Des. 69, 55–75 30) with the purely local description of the finite element space and basis as in Brenner and Sung (J. Sci. Comput. 22(1–3), 83–118 2005). In addition, we describe the construction of a simple, local basis and give for p ∈{3,4,5} explicit formulas for the Bézier or B-spline coefficients of the basis functions. Numerical experiments by solving the biharmonic equation demonstrate the potential of the proposed C1 quadrilateral finite element for the numerical analysis of fourth order problems, also indicating that (for p = 5) the proposed element performs comparable or in general even better than the Argyris triangle with respect to the number of degrees of freedom.


Sign in / Sign up

Export Citation Format

Share Document