Error estimates of the third order runge-kutta alternating evolution discontinuous galerkin method for convection-diffusion problems

2018 ◽  
Vol 52 (5) ◽  
pp. 1709-1732
Author(s):  
Hailiang Liu ◽  
Hairui Wen

In this paper, we present the stability analysis and error estimates for the alternating evolution discontinuous Galerkin (AEDG) method with third order explicit Runge-Kutta temporal discretization for linear convection-diffusion equations. The scheme is shown stable under a CFL-like stability condition c0τ ≤ ε ≤ c1h2. Here ε is the method parameter, and h is the maximum spatial grid size. We further obtain the optimal L2 error of order O(τ3 + hk+1). Key tools include two approximation finite element spaces to distinguish overlapping polynomials, coupled global projections, and energy estimates of errors. For completeness, the stability analysis and error estimates for second order explicit Runge-Kutta temporal discretization is included in the appendix.

2019 ◽  
Vol 53 (1) ◽  
pp. 105-144 ◽  
Author(s):  
Lingling Zhou ◽  
Yinhua Xia ◽  
Chi-Wang Shu

In this paper, we discuss the stability and error estimates of the fully discrete schemes for linear conservation laws, which consists of an arbitrary Lagrangian–Eulerian discontinuous Galerkin method in space and explicit total variation diminishing Runge–Kutta (TVD-RK) methods up to third order accuracy in time. The scaling arguments and the standard energy analysis are the key techniques used in our work. We present a rigorous proof to obtain stability for the three fully discrete schemes under suitable CFL conditions. With the help of the reference cell, the error equations are easy to establish and we derive the quasi-optimal error estimates in space and optimal convergence rates in time. For the Euler-forward scheme with piecewise constant elements, the second order TVD-RK method with piecewise linear elements and the third order TVD-RK scheme with polynomials of any order, the usual CFL condition is required, while for other cases, stronger time step restrictions are needed for the results to hold true. More precisely, the Euler-forward scheme needs τ ≤ ρh2 and the second order TVD-RK scheme needs $ \tau \le \rho {h}^{\frac{4}{3}}$ for higher order polynomials in space, where τ and h are the time and maximum space step, respectively, and ρ is a positive constant independent of τ and h.


Sign in / Sign up

Export Citation Format

Share Document