scholarly journals Domain decomposition and multiscale mortar mixed finite element methods for linear elasticity with weak stress symmetry

2019 ◽  
Vol 53 (6) ◽  
pp. 2081-2108
Author(s):  
Eldar Khattatov ◽  
Ivan Yotov

Two non-overlapping domain decomposition methods are presented for the mixed finite element formulation of linear elasticity with weakly enforced stress symmetry. The methods utilize either displacement or normal stress Lagrange multiplier to impose interface continuity of normal stress or displacement, respectively. By eliminating the interior subdomain variables, the global problem is reduced to an interface problem, which is then solved by an iterative procedure. The condition number of the resulting algebraic interface problem is analyzed for both methods. A multiscale mortar mixed finite element method for the problem of interest on non-matching multiblock grids is also studied. It uses a coarse scale mortar finite element space on the non-matching interfaces to approximate the trace of the displacement and impose weakly the continuity of normal stress. A priori error analysis is performed. It is shown that, with appropriate choice of the mortar space, optimal convergence on the fine scale is obtained for the stress, displacement, and rotation, as well as some superconvergence for the displacement. Computational results are presented in confirmation of the theory of all proposed methods.

2005 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
A. D. GARNADI

<p>We will provide an abstract setting for mixed finite element method for biharmonic equation. The abstract setting casts mixed finite element method for first biharmonic equation and sec- ond biharmonic equation into a single framework altogether. We provide error estimates for both type biharmonic equation, and for the first time an error estimate for the second biharmonic equation.</p>


2005 ◽  
Vol 72 (5) ◽  
pp. 711-720 ◽  
Author(s):  
Arif Masud ◽  
Kaiming Xia

We present a new multiscale/stabilized finite element method for compressible and incompressible elasticity. The multiscale method arises from a decomposition of the displacement field into coarse (resolved) and fine (unresolved) scales. The resulting stabilized-mixed form consistently represents the fine computational scales in the solution and thus possesses higher coarse mesh accuracy. The ensuing finite element formulation allows arbitrary combinations of interpolation functions for the displacement and stress fields. Specifically, equal order interpolations that are easy to implement but violate the celebrated Babushka-Brezzi inf-sup condition, become stable and convergent. Since the proposed framework is based on sound variational foundations, it provides a basis for a priori error analysis of the system. Numerical simulations pass various element patch tests and confirm optimal convergence in the norms considered.


Sign in / Sign up

Export Citation Format

Share Document