scholarly journals Finite element methods for the Darcy-Forchheimer problem coupled with the convection-diffusion-reaction problem

Author(s):  
Toni Sayah ◽  
Georges Semaan ◽  
Faouzi Triki

In this article, we consider the convection-diffusion-reaction problem coupled the Darcy-Forchheimer problem by a non-linear external force depending on the concentration. We establish existence of a solution by using a Galerkin method and we prove uniqueness. We introduce and analyse a numerical scheme based on the finite element method. An optimal a priori error estimate is then derived for each numerical scheme. Numerical investigation are performed to confirm  the theoretical accuracy of the discretization.

Author(s):  
V. Dhanya Varma ◽  
Suresh Kumar Nadupuri

Abstract In this work, a priori error estimates for finite element approximations to the governing equations of heat and mass transfer in fluidized beds are derived. These equations are time dependent strongly coupled system of five semilinear convection-diffusion-reaction equations. The a priori error estimates for all the five variables are obtained for the error measured in L ∞(L 2) and L 2 ( E ) ${L}^{2}\left(\mathcal{E}\right)$ , E $\mathcal{E}$ is the energy norm.


2014 ◽  
Vol 513-517 ◽  
pp. 1919-1926 ◽  
Author(s):  
Min Zhang ◽  
Zu Deng Yu ◽  
Yang Liu ◽  
Hong Li

In this article, the numerical scheme of a linearized Crank-Nicolson (C-N) method based on H1-Galerkin mixed finite element method (H1-GMFEM) is studied and analyzed for nonlinear coupled BBM equations. In this method, the spatial direction is approximated by an H1-GMFEM and the time direction is discretized by a linearized Crank-Nicolson method. Some optimal a priori error results are derived for four important variables. For conforming the theoretical analysis, a numerical test is presented.


Sign in / Sign up

Export Citation Format

Share Document