The Numerical Analysis and Simulation of a Linearized Crank-Nicolson H1-GMFEM for Nonlinear Coupled BBM Equations

2014 ◽  
Vol 513-517 ◽  
pp. 1919-1926 ◽  
Author(s):  
Min Zhang ◽  
Zu Deng Yu ◽  
Yang Liu ◽  
Hong Li

In this article, the numerical scheme of a linearized Crank-Nicolson (C-N) method based on H1-Galerkin mixed finite element method (H1-GMFEM) is studied and analyzed for nonlinear coupled BBM equations. In this method, the spatial direction is approximated by an H1-GMFEM and the time direction is discretized by a linearized Crank-Nicolson method. Some optimal a priori error results are derived for four important variables. For conforming the theoretical analysis, a numerical test is presented.

2005 ◽  
Vol 72 (5) ◽  
pp. 711-720 ◽  
Author(s):  
Arif Masud ◽  
Kaiming Xia

We present a new multiscale/stabilized finite element method for compressible and incompressible elasticity. The multiscale method arises from a decomposition of the displacement field into coarse (resolved) and fine (unresolved) scales. The resulting stabilized-mixed form consistently represents the fine computational scales in the solution and thus possesses higher coarse mesh accuracy. The ensuing finite element formulation allows arbitrary combinations of interpolation functions for the displacement and stress fields. Specifically, equal order interpolations that are easy to implement but violate the celebrated Babushka-Brezzi inf-sup condition, become stable and convergent. Since the proposed framework is based on sound variational foundations, it provides a basis for a priori error analysis of the system. Numerical simulations pass various element patch tests and confirm optimal convergence in the norms considered.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jinfeng Wang ◽  
Hong Li ◽  
Siriguleng He ◽  
Wei Gao ◽  
Yang Liu

We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient∇ubelongs to the weaker(L2(Ω))2space taking the place of the classicalH(div;Ω)space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates inL2andH1-norm for both the scalar unknownuand the diffusion termw=−Δuand a priori error estimates in(L2)2-norm for its gradientχ=∇ufor both semi-discrete and fully discrete schemes.


2016 ◽  
Vol 9 (2) ◽  
pp. 215-238 ◽  
Author(s):  
Hongfei Fu ◽  
Hongxing Rui ◽  
Jiansong Zhang ◽  
Hui Guo

AbstractIn this paper, we propose a splitting positive definite mixed finite element method for the approximation of convex optimal control problems governed by linear parabolic equations, where the primal state variable y and its flux σ are approximated simultaneously. By using the first order necessary and sufficient optimality conditions for the optimization problem, we derive another pair of adjoint state variables z and ω, and also a variational inequality for the control variable u is derived. As we can see the two resulting systems for the unknown state variable y and its flux σ are splitting, and both symmetric and positive definite. Besides, the corresponding adjoint states z and ω are also decoupled, and they both lead to symmetric and positive definite linear systems. We give some a priori error estimates for the discretization of the states, adjoint states and control, where Ladyzhenkaya-Babuska-Brezzi consistency condition is not necessary for the approximation of the state variable y and its flux σ. Finally, numerical experiments are given to show the efficiency and reliability of the splitting positive definite mixed finite element method.


Sign in / Sign up

Export Citation Format

Share Document