scholarly journals Polarimetric SAR image classification using 3D generative adversarial network

2021 ◽  
Vol 336 ◽  
pp. 08012
Author(s):  
Lu Liu ◽  
Guobao Feng

In this paper, a new architecture of three-dimensional deep convolutional generative adversarial network(3D-DCGAN) is specially defined to solve the unstable training problem of GAN and make full use of the information involved in polarimetric data. Firstly, a data cube with nine components of polarimetric coherency matrix are directly used as the input features of DCGAN. After that, a 3D convolutional model is designed as the components of generator and discriminator to construct the 3D-DCGAN, which considers the effective feature extraction capability of 3D convolutional neural network(CNN). Finally parameters of the network are fine-tuned to realize the polarimetric SAR image classification. The experiments results show the feasibility and efficiency of the proposed method.

2019 ◽  
Vol 11 (2) ◽  
pp. 135 ◽  
Author(s):  
Xiaoran Shi ◽  
Feng Zhou ◽  
Shuang Yang ◽  
Zijing Zhang ◽  
Tao Su

Aiming at the problem of the difficulty of high-resolution synthetic aperture radar (SAR) image acquisition and poor feature characterization ability of low-resolution SAR image, this paper proposes a method of an automatic target recognition method for SAR images based on a super-resolution generative adversarial network (SRGAN) and deep convolutional neural network (DCNN). First, the threshold segmentation is utilized to eliminate the SAR image background clutter and speckle noise and accurately extract target area of interest. Second, the low-resolution SAR image is enhanced through SRGAN to improve the visual resolution and the feature characterization ability of target in the SAR image. Third, the automatic classification and recognition for SAR image is realized by using DCNN with good generalization performance. Finally, the open data set, moving and stationary target acquisition and recognition, is utilized and good recognition results are obtained under standard operating condition and extended operating conditions, which verify the effectiveness, robustness, and good generalization performance of the proposed method.


2017 ◽  
Vol 7 (5) ◽  
pp. 447 ◽  
Author(s):  
Fei Gao ◽  
Teng Huang ◽  
Jun Wang ◽  
Jinping Sun ◽  
Amir Hussain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document