scholarly journals Riemann problem with delta initial data for the two-dimensional steady pressureless isentropic relativistic Euler equations

Author(s):  
Yu Zhang ◽  
Yanyan Zhang

The Riemann problem for the two-dimensional steady pressureless isentropic relativistic Euler equations with delta initial data is studied. First, the perturbed Riemann problem with three pieces constant initial data is solved. Then, via discussing the limits of solutions to the perturbed Riemann problem, the global solutions of Riemann problem with delta initial data are completely constructed under the stability theory of weak solutions. Interestingly, the delta contact discontinuity is found in the Riemann solutions of the two-dimensional steady pressureless isentropic relativistic Euler equations with delta initial data.

2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Pengpeng Ji ◽  
Chun Shen

The global solutions of the perturbed Riemann problem for the Leroux system are constructed explicitly under the suitable assumptions when the initial data are taken to be three piecewise constant states. The wave interaction problems are widely investigated during the process of constructing global solutions with the help of the geometrical structures of the shock and rarefaction curves in the phase plane. In addition, it is shown that the Riemann solutions are stable with respect to the specific small perturbations of the Riemann initial data.


Author(s):  
Yu Zhang ◽  
Yanyan Zhang

Abstract We are concerned with the vanishing flux-approximation limits of solutions to the isentropic relativistic Euler equations governing isothermal perfect fluid flows. The Riemann problem with a two-parameter flux approximation including pressure term is first solved. Then, we study the limits of solutions when the pressure and two-parameter flux approximation vanish, respectively. It is shown that, any two-shock-wave Riemann solution converges to a delta-shock solution of the pressureless relativistic Euler equations, and the intermediate density between these two shocks tends to a weighted δ-measure that forms a delta shock wave. By contract, any two-rarefaction-wave solution tends to a two-contact-discontinuity solution of the pressureless relativistic Euler equations, and the intermediate state in between tends to a vacuum state.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yujin Liu ◽  
Wenhua Sun

The generalized Riemann problem for a simplified model of one-dimensional ideal gas in magnetogasdynamics in a neighborhood of the origin(t>0)in the(x,t)plane is considered. According to the different cases of the corresponding Riemann solutions, we construct the perturbed solutions uniquely with the characteristic method. We find that, for some case, the contact discontinuity appears after perturbation while there is no contact discontinuity of the corresponding Riemann solution. For most cases, the Riemann solutions are stable and the perturbation can not affect the corresponding Riemann solutions. While, for some few cases, the forward (backward) rarefaction wave can be transformed into the forward (backward) shock wave which shows that the Riemann solutions are unstable under such local small perturbations of the Riemann initial data.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Yuhao Jiang ◽  
Chun Shen

The Riemann problem for a special Keyfitz-Kranzer system is investigated and then seven different Riemann solutions are constructed. When the initial data are chosen as three piecewise constant states under suitable assumptions, the global solutions to the perturbed Riemann problem are constructed explicitly by studying all occurring wave interactions in detail. Furthermore, the stabilities of solutions are obtained under the specific small perturbations of Riemann initial data.


2021 ◽  
Vol 18 (03) ◽  
pp. 701-728
Author(s):  
Huali Zhang

We prove the local existence, uniqueness and stability of local solutions for the Cauchy problem of two-dimensional compressible Euler equations, where the initial data of velocity, density, specific vorticity [Formula: see text] and the spatial derivative of specific vorticity [Formula: see text].


Author(s):  
Johannes Lankeit

This paper deals with the logistic Keller–Segel model \[ \begin{cases} u_t = \Delta u - \chi \nabla\cdot(u\nabla v) + \kappa u - \mu u^2, \\ v_t = \Delta v - v + u \end{cases} \] in bounded two-dimensional domains (with homogeneous Neumann boundary conditions and for parameters χ, κ ∈ ℝ and μ > 0), and shows that any nonnegative initial data (u0, v0) ∈ L1 × W1,2 lead to global solutions that are smooth in $\bar {\Omega }\times (0,\infty )$ .


Sign in / Sign up

Export Citation Format

Share Document