scholarly journals On the derivative-free quasi-Newton-type algorithm for separable systems of nonlinear equations

Author(s):  
Hassan Mohammad ◽  
Aliyu Muhammed Awwal ◽  
Auwal Bala Abubakar ◽  
Ahmad Salihu Ben Musa

A derivative-free quasi-Newton-type algorithm in which its search direction is a product of a positive definite diagonal matrix and a residual vector is presented. The algorithm is simple to implement and has the ability to solve large-scale nonlinear systems of equations with separable functions. The diagonal matrix is simply obtained in a quasi-Newton manner at each iteration. Under some suitable conditions, the global and R-linear convergence result of the algorithm are presented. Numerical test on some benchmark separable nonlinear equations problems reveal the robustness and efficiency of the algorithm.

2019 ◽  
Vol 2 (3) ◽  
pp. 1-4
Author(s):  
Abubakar Sani Halilu ◽  
M K Dauda ◽  
M Y Waziri ◽  
M Mamat

An algorithm for solving large-scale systems of nonlinear equations based on the transformation of the Newton method with the line search into a derivative-free descent method is introduced. Main idea used in the algorithm construction is to approximate the Jacobian by an appropriate diagonal matrix. Furthermore, the step length is calculated using inexact line search procedure. Under appropriate conditions, the proposed method is proved to be globally convergent under mild conditions. The numerical results presented show the efficiency of the proposed method.


2021 ◽  
Vol 4 (4) ◽  
pp. 382-390
Author(s):  
Muhammad Kabir Dauda

Nonlinear problems mostly emanate from the work of engineers, physicists, mathematicians and many other scientists. A variety of iterative methods have been developed for solving large scale nonlinear systems of equations. A prominent method for solving such equations is the classical Newton’s method, but it has many shortcomings that include computing Jacobian inverse that sometimes fails. To overcome such drawbacks, an approximation with derivative free line is used on an existing method. The method uses PSB (Powell-Symmetric Broyden) update. The efficiency of the proposed method has been improved in terms of number of iteration and CPU time, hence the aim of this research. The preliminary numerical results show that the proposed method is practically efficient when applied on some benchmark problems.


Author(s):  
M. Y. Waziri ◽  
L. Muhammad ◽  
J. Sabi’u

<p>This paper presents a simple three-terms Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear equations without computing Jacobian and gradient via the special structure of the underlying function. This three term CG of the proposed method has an advantage of solving relatively large-scale problems, with lower storage requirement compared to some existing methods. By incoporating the Powel restart approach in to the algorithm, we prove the global convergence of the proposed method with a derivative free line search under suitable assumtions. The numerical results are presented which show that the proposed method is promising.</p>


Author(s):  
Mohammed Yusuf Waziri ◽  
Jamilu Sabi’u

We suggest a conjugate gradient (CG) method for solving symmetric systems of nonlinear equations without computing Jacobian and gradient via the special structure of the underlying function. This derivative-free feature of the proposed method gives it advantage to solve relatively large-scale problems (500,000 variables) with lower storage requirement compared to some existing methods. Under appropriate conditions, the global convergence of our method is reported. Numerical results on some benchmark test problems show that the proposed method is practically effective.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mohammed Yusuf Waziri ◽  
Zanariah Abdul Majid

We present a new diagonal quasi-Newton update with an improved diagonal Jacobian approximation for solving large-scale systems of nonlinear equations. In this approach, the Jacobian approximation is derived based on the quasi-Cauchy condition. The anticipation has been to further improve the performance of diagonal updating, by modifying the quasi-Cauchy relation so as to carry some additional information from the functions. The effectiveness of our proposed scheme is appraised through numerical comparison with some well-known Newton-like methods.


2017 ◽  
Vol 6 (4) ◽  
pp. 147 ◽  
Author(s):  
Abubakar Sani Halilu ◽  
H. Abdullahi ◽  
Mohammed Yusuf Waziri

A variant method for solving system of nonlinear equations is presented. This method use the special form of iteration with two step length parameters, we suggest a derivative-free method without computing the Jacobian via acceleration parameter as well as inexact line search procedure. The proposed method is proven to be globally convergent under mild condition. The preliminary numerical comparison reported in this paper using a large scale benchmark test problems show that the proposed method is practically quite effective.


Author(s):  
Jamilu Sabi'u ◽  
Abdullah Shah

In this article, we proposed two Conjugate Gradient (CG) parameters using the modified Dai-{L}iao condition and the descent three-term CG search direction. Both parameters are incorporated with the projection technique for solving large-scale monotone nonlinear equations. Using the Lipschitz and monotone assumptions, the global convergence of methods has been proved. Finally, numerical results are provided to illustrate the robustness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document