scholarly journals A Derivative-Free Conjugate Gradient Method and Its Global Convergence for Solving Symmetric Nonlinear Equations

Author(s):  
Mohammed Yusuf Waziri ◽  
Jamilu Sabi’u

We suggest a conjugate gradient (CG) method for solving symmetric systems of nonlinear equations without computing Jacobian and gradient via the special structure of the underlying function. This derivative-free feature of the proposed method gives it advantage to solve relatively large-scale problems (500,000 variables) with lower storage requirement compared to some existing methods. Under appropriate conditions, the global convergence of our method is reported. Numerical results on some benchmark test problems show that the proposed method is practically effective.

Author(s):  
M. Y. Waziri ◽  
L. Muhammad ◽  
J. Sabi’u

<p>This paper presents a simple three-terms Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear equations without computing Jacobian and gradient via the special structure of the underlying function. This three term CG of the proposed method has an advantage of solving relatively large-scale problems, with lower storage requirement compared to some existing methods. By incoporating the Powel restart approach in to the algorithm, we prove the global convergence of the proposed method with a derivative free line search under suitable assumtions. The numerical results are presented which show that the proposed method is promising.</p>


Author(s):  
M. K. Dauda ◽  
Mustafa Mamat ◽  
Mohamad A. Mohamed ◽  
Nor Shamsidah Amir Hamzah

Mathematical models from recent research are mostly nonlinear equations in nature. Numerical solutions to such systems are widely needed and applied in those areas of  mathematics. Although, in recent years, this field received serious attentions and new approach were discovered, but yet the efficiency of the previous versions suffers setback. This article gives a new hybrid conjugate gradient parameter, the method is derivative-free and analyzed with an effective inexact line search in a given conditions. Theoretical proofs show that the proposed method retains the sufficient descent and global convergence properties of the original CG methods. The proposed method is tested on a set of test functions, then compared to the two previous classical CG-parameter that resulted the given method, and its performance is given based on number of iterations and CPU time. The numerical results show that the new proposed method is efficient and effective amongst all the methods tested. The graphical representation of the result justify our findings. The computational result indicates that the new hybrid conjugate gradient parameter is suitable and capable for solving symmetric systems of nonlinear equations.


2020 ◽  
Vol 8 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Abubakar Sani Halilu ◽  
Mohammed Yusuf Waziri ◽  
Yau Balarabe Musa

In this paper, a single direction with double step length method for solving systems of nonlinear equations is presented. Main idea used in the algorithm is to approximate the Jacobian via acceleration parameter. Furthermore, the two step lengths are calculated using inexact line search procedure. This method is matrix-free, and so is advantageous when solving large-scale problems. The proposed method is proven to be globally convergent under appropriate conditions. The preliminary numerical results reported in this paper using a large-scale benchmark test problems show that the proposed method is practically quite effective.


2019 ◽  
Vol 15 (1) ◽  
pp. 117-120 ◽  
Author(s):  
Muhammad Kabir Dauda ◽  
Mustafa Mamat ◽  
Mohamad Afendee Mohamed ◽  
Mahammad Yusuf Waziri

The systems of nonlinear equations emerges from many areas of computing, scientific and engineering research applications. A variety of an iterative methods for solving such systems have been developed, this include the famous Newton method. Unfortunately, the Newton method suffers setback, which includes storing  matrix at each iteration and computing Jacobian matrix, which may be difficult or even impossible to compute. To overcome the drawbacks that bedeviling Newton method, a modification to SR1 update was proposed in this study. With the aid of inexact line search procedure by Li and Fukushima, the modification was achieved by simply approximating the inverse Hessian matrix  with an identity matrix without computing the Jacobian. Unlike the classical SR1 method, the modification neither require storing  matrix at each iteration nor needed to compute the Jacobian matrix. In finding the solution to non-linear problems of the form  40 benchmark test problems were solved. A comparison was made with other two methods based on CPU time and number of iterations. In this study, the proposed method solved 37 problems effectively in terms of number of iterations. In terms of CPU time, the proposed method also outperformed the existing methods. The contribution from the methodology yielded a method that is suitable for solving symmetric systems of nonlinear equations. The derivative-free feature of the proposed method gave its advantage to solve relatively large-scale problems (10,000 variables) compared to the existing methods. From the preliminary numerical results, the proposed method turned out to be significantly faster, effective and suitable for solving large scale symmetric nonlinear equations.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 234
Author(s):  
Jamilu Sabi’u ◽  
Kanikar Muangchoo ◽  
Abdullah Shah ◽  
Auwal Bala Abubakar ◽  
Lateef Olakunle Jolaoso

Inspired by the large number of applications for symmetric nonlinear equations, this article will suggest two optimal choices for the modified Polak–Ribiére–Polyak (PRP) conjugate gradient (CG) method by minimizing the measure function of the search direction matrix and combining the proposed direction with the default Newton direction. In addition, the corresponding PRP parameters are incorporated with the Li and Fukushima approximate gradient to propose two robust CG-type algorithms for finding solutions for large-scale systems of symmetric nonlinear equations. We have also demonstrated the global convergence of the suggested algorithms using some classical assumptions. Finally, we demonstrated the numerical advantages of the proposed algorithms compared to some of the existing methods for nonlinear symmetric equations.


2017 ◽  
Vol 6 (4) ◽  
pp. 147 ◽  
Author(s):  
Abubakar Sani Halilu ◽  
H. Abdullahi ◽  
Mohammed Yusuf Waziri

A variant method for solving system of nonlinear equations is presented. This method use the special form of iteration with two step length parameters, we suggest a derivative-free method without computing the Jacobian via acceleration parameter as well as inexact line search procedure. The proposed method is proven to be globally convergent under mild condition. The preliminary numerical comparison reported in this paper using a large scale benchmark test problems show that the proposed method is practically quite effective.


Author(s):  
Jamilu Sabi'u ◽  
Abdullah Shah

In this article, we proposed two Conjugate Gradient (CG) parameters using the modified Dai-{L}iao condition and the descent three-term CG search direction. Both parameters are incorporated with the projection technique for solving large-scale monotone nonlinear equations. Using the Lipschitz and monotone assumptions, the global convergence of methods has been proved. Finally, numerical results are provided to illustrate the robustness of the proposed methods.


Author(s):  
Mompati Koorapetse ◽  
P Kaelo ◽  
S Kooepile-Reikeletseng

In this paper, a new modified Perry-type derivative-free projection method for solving large-scale nonlinear monotone equations is presented. The method is developed by combining a modified Perry's conjugate gradient method with the hyperplane projection technique. Global convergence and numerical results of the proposed method are established. Preliminary numerical results show that the proposed method is promising and efficient compared to some existing methods in the literature.


2019 ◽  
Vol 2 (3) ◽  
pp. 1-4
Author(s):  
Abubakar Sani Halilu ◽  
M K Dauda ◽  
M Y Waziri ◽  
M Mamat

An algorithm for solving large-scale systems of nonlinear equations based on the transformation of the Newton method with the line search into a derivative-free descent method is introduced. Main idea used in the algorithm construction is to approximate the Jacobian by an appropriate diagonal matrix. Furthermore, the step length is calculated using inexact line search procedure. Under appropriate conditions, the proposed method is proved to be globally convergent under mild conditions. The numerical results presented show the efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document