scholarly journals Strong equality of Roman and perfect Roman domination in trees

Author(s):  
Zehui Shao ◽  
Saeed Kosari ◽  
Hadi Rahbani ◽  
Mehdi Sharifzadeh ◽  
Seyed Mahmoud Sheikholeslami

A Roman dominating function (RD-function) on a graph $G = (V, E)$ is a function $f: V \longrightarrow \{0, 1, 2\}$ satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex $v$ for which $f(v) = 2$. An Roman dominating function $f$ in a graph $G$ is perfect Roman dominating function (PRD-function) if  every vertex $u$ with $f(u) = 0$ is adjacent to exactly one vertex  $v$ for which $f(v) = 2$. The (perfect) Roman domination number $\gamma_R(G)$ ($\gamma_{R}^{p}(G)$) is the minimum weight of an (perfect) Roman dominating function on $G$.  We say that $\gamma_{R}^{p}(G)$ strongly equals $\gamma_R(G)$, denoted by $\gamma_{R}^{p}(G)\equiv \gamma_R(G)$, if every RD-function on $G$ of minimum weight is a PRD-function. In this paper we  show that for a given graph $G$, it is NP-hard to decide whether $\gamma_{R}^{p}(G)= \gamma_R(G)$ and also we provide a constructive characterization of trees $T$ with $\gamma_{R}^{p}(T)\equiv \gamma_R(T)$.

2021 ◽  
Vol 45 (5) ◽  
pp. 685-698
Author(s):  
H. NARESH KUMAR ◽  
◽  
Y. B. VENKATAKRISHNAN

A vertex-edge Roman dominating function (or just ve-RDF) of a graph G = (V,E) is a function f : V (G) →{0, 1, 2} such that for each edge e = uv either max{f(u),f(v)}≠0 or there exists a vertex w such that either wu ∈ E or wv ∈ E and f(w) = 2. The weight of a ve-RDF is the sum of its function values over all vertices. The vertex-edge Roman domination number of a graph G, denoted by γveR(G), is the minimum weight of a ve-RDF G. In this paper, we initiate a study of vertex-edge Roman dominaton. We first show that determining the number γveR(G) is NP-complete even for bipartite graphs. Then we show that if T is a tree different from a star with order n, l leaves and s support vertices, then γveR(T) ≥ (n − l − s + 3)∕2, and we characterize the trees attaining this lower bound. Finally, we provide a characterization of all trees with γveR(T) = 2γ′(T), where γ′(T) is the edge domination number of T.


Author(s):  
H. Naresh Kumar ◽  
Y. B. Venkatakrishnan

An edge-vertex Roman dominating function (or just ev-RDF) of a graph [Formula: see text] is a function [Formula: see text] such that for each vertex [Formula: see text] either [Formula: see text] where [Formula: see text] is incident with [Formula: see text] or there exists an edge [Formula: see text] adjacent to [Formula: see text] such that [Formula: see text]. The weight of a ev-RDF is the sum of its function values over all edges. The edge-vertex Roman domination number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum weight of an ev-RDF [Formula: see text]. We provide a characterization of all trees with [Formula: see text], where [Formula: see text] is the domination number of [Formula: see text]


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 831 ◽  
Author(s):  
Abel Cabrera Martínez ◽  
Luis P. Montejano ◽  
Juan A. Rodríguez-Velázquez

Given a graph G = ( V , E ) , a function f : V → { 0 , 1 , 2 , ⋯ } is said to be a total dominating function if ∑ u ∈ N ( v ) f ( u ) > 0 for every v ∈ V , where N ( v ) denotes the open neighbourhood of v. Let V i = { x ∈ V : f ( x ) = i } . We say that a function f : V → { 0 , 1 , 2 } is a total weak Roman dominating function if f is a total dominating function and for every vertex v ∈ V 0 there exists u ∈ N ( v ) ∩ ( V 1 ∪ V 2 ) such that the function f ′ , defined by f ′ ( v ) = 1 , f ′ ( u ) = f ( u ) - 1 and f ′ ( x ) = f ( x ) whenever x ∈ V ∖ { u , v } , is a total dominating function as well. The weight of a function f is defined to be w ( f ) = ∑ v ∈ V f ( v ) . In this article, we introduce the study of the total weak Roman domination number of a graph G, denoted by γ t r ( G ) , which is defined to be the minimum weight among all total weak Roman dominating functions on G. We show the close relationship that exists between this novel parameter and other domination parameters of a graph. Furthermore, we obtain general bounds on γ t r ( G ) and, for some particular families of graphs, we obtain closed formulae. Finally, we show that the problem of computing the total weak Roman domination number of a graph is NP-hard.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 336
Author(s):  
Zehui Shao ◽  
Rija Erveš ◽  
Huiqin Jiang ◽  
Aljoša Peperko ◽  
Pu Wu ◽  
...  

A double Roman dominating function on a graph G=(V,E) is a function f:V→{0,1,2,3} with the properties that if f(u)=0, then vertex u is adjacent to at least one vertex assigned 3 or at least two vertices assigned 2, and if f(u)=1, then vertex u is adjacent to at least one vertex assigned 2 or 3. The weight of f equals w(f)=∑v∈Vf(v). The double Roman domination number γdR(G) of a graph G is the minimum weight of a double Roman dominating function of G. A graph is said to be double Roman if γdR(G)=3γ(G), where γ(G) is the domination number of G. We obtain the sharp lower bound of the double Roman domination number of generalized Petersen graphs P(3k,k), and we construct solutions providing the upper bounds, which gives exact values of the double Roman domination number for all generalized Petersen graphs P(3k,k). This implies that P(3k,k) is a double Roman graph if and only if either k≡0 (mod 3) or k∈{1,4}.


Author(s):  
P. Roushini Leely Pushpam ◽  
B. Mahavir ◽  
M. Kamalam

Let [Formula: see text] be a graph and [Formula: see text] be a Roman dominating function defined on [Formula: see text]. Let [Formula: see text] be some ordering of the vertices of [Formula: see text]. For any [Formula: see text], [Formula: see text] is defined by [Formula: see text]. If for all [Formula: see text], [Formula: see text], we have [Formula: see text], that is [Formula: see text], for some [Formula: see text], then [Formula: see text] is called a resolving Roman dominating function (RDF) on [Formula: see text]. The weight of a resolving RDF [Formula: see text] on [Formula: see text] is [Formula: see text]. The minimum weight of a resolving RDF on [Formula: see text] is called the resolving Roman domination number of [Formula: see text] and is denoted by [Formula: see text]. A resolving RDF on [Formula: see text] with weight [Formula: see text] is called a [Formula: see text]-function on [Formula: see text]. In this paper, we find the resolving Roman domination number of certain well-known classes of graphs. We also categorize the class of graphs whose resolving Roman domination number equals their order.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050020
Author(s):  
S. Nazari-Moghaddam ◽  
L. Volkmann

A double Roman dominating function (DRDF) on a graph [Formula: see text] is a function [Formula: see text] such that (i) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least two vertices assigned a [Formula: see text] or to at least one vertex assigned a [Formula: see text] and (ii) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text] The weight of a DRDF is the sum of its function values over all vertices. The double Roman domination number [Formula: see text] equals the minimum weight of a DRDF on [Formula: see text] The concept of criticality with respect to various operations on graphs has been studied for several domination parameters. In this paper, we study the concept of criticality for double Roman domination in graphs. In addition, we characterize double Roman domination edge super critical graphs and we will give several characterizations for double Roman domination vertex (edge) critical graphs.


2018 ◽  
Vol 11 (03) ◽  
pp. 1850034 ◽  
Author(s):  
J. Amjadi ◽  
M. Soroudi

Let [Formula: see text] be a finite simple digraph with vertex set [Formula: see text] and arc set [Formula: see text]. A twin signed total Roman dominating function (TSTRDF) on the digraph [Formula: see text] is a function [Formula: see text] satisfying the conditions that (i) [Formula: see text] and [Formula: see text] for each [Formula: see text], where [Formula: see text] (respectively [Formula: see text]) consists of all in-neighbors (respectively out-neighbors) of [Formula: see text], and (ii) every vertex [Formula: see text] for which [Formula: see text] has an in-neighbor [Formula: see text] and an out-neighbor [Formula: see text] with [Formula: see text]. The weight of an TSTRDF [Formula: see text] is [Formula: see text]. The twin signed total Roman domination number [Formula: see text] of [Formula: see text] is the minimum weight of an TSTRDF on [Formula: see text]. In this paper, we initiate the study of twin signed total Roman domination in digraphs and we present some sharp bounds on [Formula: see text]. In addition, we determine the twin signed Roman domination number of some classes of digraphs.


2015 ◽  
Vol 07 (04) ◽  
pp. 1550048 ◽  
Author(s):  
Mustapha Chellali ◽  
Nader Jafari Rad

A Roman dominating function (RDF) on a graph [Formula: see text] is a function [Formula: see text] satisfying the condition that every vertex [Formula: see text] for which [Formula: see text] is adjacent to at least one vertex [Formula: see text] for which [Formula: see text]. The weight of a RDF [Formula: see text] is the value [Formula: see text]. The Roman domination number, [Formula: see text], of [Formula: see text] is the minimum weight of a RDF on [Formula: see text]. An RDF [Formula: see text] is called an independent Roman dominating function (IRDF) if the set [Formula: see text] is an independent set. The independent Roman domination number, [Formula: see text], is the minimum weight of an IRDF on [Formula: see text]. In this paper, we study trees with independent Roman domination number twice their independent domination number, answering an open question.


2013 ◽  
Vol 05 (01) ◽  
pp. 1350001 ◽  
Author(s):  
A. BAHREMANDPOUR ◽  
FU-TAO HU ◽  
S. M. SHEIKHOLESLAMI ◽  
JUN-MING XU

A Roman dominating function (RDF) on a graph G = (V, E) is a function f : V → {0, 1, 2} such that every vertex v ∈ V with f(v) = 0 has at least one neighbor u ∈ V with f(u) = 2. The weight of a RDF is the value f(V(G)) = Σu∈V(G) f(u). The minimum weight of a RDF on a graph G is called the Roman domination number, denoted by γR(G). The Roman bondage number bR(G) of a graph G with maximum degree at least two is the minimum cardinality of all sets E′ ⊆ E(G) for which γR(G - E′) > γR(G). In this paper, we first show that the decision problem for determining bR(G) is NP-hard even for bipartite graphs and then we establish some sharp bounds for bR(G) and characterizes all graphs attaining some of these bounds.


Author(s):  
Hossein Abdollahzadeh Ahangar ◽  
Jafar Amjadi ◽  
Mustapha Chellali ◽  
S. Kosari ◽  
Vladimir Samodivkin ◽  
...  

Let $G=(V,E)$ be a simple graph with vertex set $V$ and edge set $E$. A mixed Roman dominating function (MRDF) of $G$ is a function $f:V\cup E\rightarrow \{0,1,2\}$ satisfying the condition that every element $x\in V\cup E$ for which $f(x)=0$ is adjacent or incident to at least one element $% y\in V\cup E$ for which $f(y)=2$. The weight of a mixed Roman dominating function $f$ is $\omega (f)=\sum_{x\in V\cup E}f(x)$. The mixed Roman domination number $\gamma _{R}^{\ast }(G)$ of $G$ is the minimum weight of a mixed Roman dominating function of $G$. We first show that the problem of computing $\gamma _{R}^{\ast }(G)$ is NP-complete for bipartite graphs and then we present upper and lower bounds on the mixed Roman domination number, some of them are for the class of trees.


Sign in / Sign up

Export Citation Format

Share Document