scholarly journals Convex quadratic underestimation and Branch and Bound for univariate global optimization with one nonconvex constraint

2006 ◽  
Vol 40 (3) ◽  
pp. 285-302 ◽  
Author(s):  
Hoai An Le Thi ◽  
Mohand Ouanes
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yuelin Gao ◽  
Siqiao Jin

We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the convergence of the algorithm is proved. Numerical experiments are reported to show the effectiveness of the proposed algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yingfeng Zhao ◽  
Ting Zhao

Applications of generalized linear multiplicative programming problems (LMP) can be frequently found in various areas of engineering practice and management science. In this paper, we present a simple global optimization algorithm for solving linear multiplicative programming problem (LMP). The algorithm is developed by a fusion of a new convex relaxation method and the branch and bound scheme with some accelerating techniques. Global convergence and optimality of the algorithm are also presented and extensive computational results are reported on a wide range of problems from recent literature and GLOBALLib. Numerical experiments show that the proposed algorithm with a new convex relaxation method is more efficient than usual branch and bound algorithm that used linear relaxation for solving the LMP.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Chun-Feng Wang ◽  
Yan-Qin Bai

This paper presents a new global optimization algorithm for solving a class of linear multiplicative programming (LMP) problem. First, a new linear relaxation technique is proposed. Then, to improve the convergence speed of our algorithm, two pruning techniques are presented. Finally, a branch and bound algorithm is developed for solving the LMP problem. The convergence of this algorithm is proved, and some experiments are reported to illustrate the feasibility and efficiency of this algorithm.


Sign in / Sign up

Export Citation Format

Share Document