scholarly journals Cholestasis with altered structure and function of hepatocyte tight junction and decreased expression of canalicular multispecific organic anion transporter in a rat model of colitis

Hepatology ◽  
2000 ◽  
Vol 31 (6) ◽  
pp. 1285-1295 ◽  
Author(s):  
Takumi Kawaguchi ◽  
Shotaro Sakisaka ◽  
Keiichi Mitsuyama ◽  
Masaru Harada ◽  
Hironori Koga ◽  
...  
2022 ◽  
Author(s):  
Angelika Janaszkiewicz ◽  
Ágota Tóth ◽  
Quentin Faucher ◽  
Marving Martin ◽  
Benjamin Chantemargue ◽  
...  

The human SLC22A6/OAT1 plays an important role in the disposition of a broad range of endogenous substances and xenobiotics. This is particularly important from the pharmacological point of view since OAT1 is involved in drug elimination events. Furthermore, OAT1 is also involved in key physiological events such as the remote inter-organ communication. Despite its significance, the knowledge about OAT1 structure and the transport mechanism at the atomic level remains fragmented owing to the lack of resolved structures. By means of protein-threading modeling refined by μs-scaled Molecular Dynamics simulations, the present study provides the first robust model of hOAT1 in outward-facing conformation. Taking advantage of the AlphaFold 2 predicted structure of hOAT1 in inward-facing conformation, we here provide the essential structural and functional features comparing both states. The intracellular motifs conserved among Major Facilitator Superfamily members create a so-called "charge-relay system" that works as molecular switches modulating the conformation. The principal element of the event points at interactions charged residues that appear crucial for the transporter dynamics and function. Besides, hOAT1 model was embedded in different lipid bilayer membranes highlighting the crucial structural dependence on lipid-protein. MD simulations supported the pivotal role of phosphatidylethanolamine (PE) components on the protein conformation stability. The present model is made available to decipher the impact of any observed polymorphism and mutation on drug transport as well as to understand substrate binding modes.


2004 ◽  
Vol 42 (08) ◽  
Author(s):  
A Geier ◽  
CG Dietrich ◽  
C Gartung ◽  
F Lammert ◽  
HE Wasmuth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document