membrane lipid
Recently Published Documents


TOTAL DOCUMENTS

2707
(FIVE YEARS 543)

H-INDEX

119
(FIVE YEARS 12)

2022 ◽  
Vol 186 ◽  
pp. 111844
Author(s):  
Shunqing Hu ◽  
Yuqing Ma ◽  
Bing Xie ◽  
Yuanyuan Hou ◽  
Zhenyu Jia ◽  
...  

2022 ◽  
Vol 1864 (1) ◽  
pp. 183749
Author(s):  
Alain Bolaño Alvarez ◽  
Pablo E.A. Rodríguez ◽  
Gerardo D. Fidelio

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Yutaro Oishi ◽  
Rie Otaki ◽  
Yukari Iijima ◽  
Eri Kumagai ◽  
Motohide Aoki ◽  
...  

AbstractMembrane lipid remodeling contributes to the environmental acclimation of plants. In the green lineage, a betaine lipid, diacylglyceryl-N,N,N-trimethylhomoserine (DGTS), is included exclusively among green algae and nonflowering plants. Here, we show that the green alga Chlorella kessleri synthesizes DGTS under phosphorus-deficient conditions through the eukaryotic pathway via the ER. Simultaneously, phosphatidylcholine and phosphatidylethanolamine, which are similar to DGTS in their zwitterionic properties, are almost completely degraded to release 18.1% cellular phosphorus, and to provide diacylglycerol moieties for a part of DGTS synthesis. This lipid remodeling system that substitutes DGTS for extrachloroplast phospholipids to lower the P-quota operates through the expression induction of the BTA1 gene. Investigation of this lipid remodeling system is necessary in a wide range of lower green plants for a comprehensive understanding of their phosphorus deficiency acclimation strategies.


Author(s):  
Yuki Ishiwata-Kimata ◽  
Quynh Giang Le ◽  
Yukio Kimata

Phosphatidylcholine (PC) is produced via two distinct pathways in both hepatocytes and yeast, Saccharomyces cerevisiae. One of these pathways involves the sequential methylation of phosphatidylethanolamine (PE). In yeast cells, the methyltransferase, Cho2, converts PE to phosphatidylmonomethylethanolamine (PMME), which is further modified to PC by another methyltransferase, Opi3. On the other hand, free choline is utilized for PC production via the Kennedy pathway. The blockage of PC production is well known to cause endoplasmic reticulum (ER) stress and activate the ER-stress sensor, Ire1, to induce unfolded protein response (UPR). Here, we demonstrate that even when free choline is sufficiently supplied, the opi3Δ mutation, but not the cho2 Δ mutation, induces the UPR. The UPR was also found to be induced by CHO2 overexpression. Further, monomethylethanolamine, which is converted to PMME probably through the Kennedy pathway, caused or potentiated ER stress in both mammalian and yeast cells. We thus deduce that PMME per se is an ER-stressing molecule. Interestingly, spontaneously accumulated PMME seemed to aggravate ER stress in yeast cells. Collectively, our findings demonstrate the multiple detrimental effects of the low-abundance phospholipid species, PMME.


Author(s):  
Laura Laschke ◽  
Vadim Schütz ◽  
Oliver Schackow ◽  
Dieter Sicker ◽  
Lothar Hennig ◽  
...  

AbstractFor the characterization of BOA-OH insensitive plants, we studied the time-dependent effects of the benzoxazolinone-4/5/6/7-OH isomers on maize roots. Exposure of Zea mays seedlings to 0.5 mM BOA-OH elicits root zone-specific reactions by the formation of dark rings and spots in the zone of lateral roots, high catalase activity on root hairs, and no visible defense reaction at the root tip. We studied BOA-6-OH- short-term effects on membrane lipids and fatty acids in maize root tips in comparison to the benzoxazinone-free species Abutilon theophrasti Medik. Decreased contents of phosphatidylinositol in A. theophrasti and phosphatidylcholine in maize were found after 10–30 min. In the youngest tissue, α-linoleic acid (18:2), decreased considerably in both species and recovered within one hr. Disturbances in membrane phospholipid contents were balanced in both species within 30–60 min. Triacylglycerols (TAGs) were also affected, but levels of maize diacylglycerols (DAGs) were almost unchanged, suggesting a release of fatty acids for membrane lipid regeneration from TAGs while resulting DAGs are buildings blocks for phospholipid reconstitution, concomitant with BOA-6-OH glucosylation. Expression of superoxide dismutase (SOD2) and of ER-bound oleoyl desaturase (FAD2-2) genes were contemporaneously up regulated in contrast to the catalase CAT1, while CAT3 was arguably involved at a later stage of the detoxification process. Immuno-responses were not elicited in short-terms, since the expression of NPR1, POX12 were barely affected, PR4 after 6 h with BOA-4/7-OH and PR1 after 24 h with BOA-5/6-OH. The rapid membrane recovery, reactive oxygen species, and allelochemical detoxification may be characteristic for BOA-OH insensitive plants.


2022 ◽  
Author(s):  
Marie-Lise Jobin ◽  
Veronique De Smedt-Peyrusse ◽  
Fabien Ducrocq ◽  
Asma Oummadi ◽  
Rim Baccouch ◽  
...  

The heterogenous and dynamic constitution of the membrane fine-tunes signal transduction. In particular, the polyunsaturated fatty acid (PUFA) tails of phospholipids influence the biophysical properties of the membrane, production of second messengers, or membrane partitioning. Few evidence mostly originating from studies of rhodopsin suggest that PUFAs directly modulate the conformational dynamic of transmembrane proteins. However, whether such properties translate to other G protein-coupled receptors remains unclear. We focused on the dopamine D2 receptor (D2R), a main target of antipsychotics. Membrane enrichment in n-3, but not n-6, PUFAs potentiates ligand binding. Molecular dynamics simulations show that the D2R preferentially interacts with n-3 over n-6 PUFAs. Furthermore, even though this mildly affects signalling in heterologous systems, in vivo n-3 PUFA deficiency blunts the effects of D2R ligands. These results suggest that n-3 PUFAs act as allosteric modulators of the D2R and provide a putative mechanism for their potentiating effect on antipsychotic efficacy.


2022 ◽  
Vol 147 (1) ◽  
pp. 18-24
Author(s):  
Stephanie Rossi ◽  
Bingru Huang

Heat stress symptoms in cool-season plants are characterized by loss of chlorophyll (Chl) and membrane stability, as well as oxidative damage. The objectives of this study were to determine whether foliar application of β-sitosterol, a naturally occurring plant metabolite, may promote heat tolerance by suppressing heat-induced leaf senescence as indicated by the maintenance of healthy turf quality (TQ), and Chl and membrane stability; and to determine its roles in regulating antioxidant metabolism in creeping bentgrass (Agrostis stolonifera). ‘Penncross’ plants were exposed to heat stress (35/30 °C day/night) optimal temperature conditions (nonstressed control, 22/17 °C day/night) for a duration of 28 days in environment-controlled growth chambers. Plants were foliar-treated with β-sitosterol (400 µM) or water only (untreated control) before heat stress, and at 7-day intervals through 28 days of heat stress. Plants treated with β-sitosterol had significantly greater TQ and Chl content, and significantly less electrolyte leakage (EL) than untreated controls at 21 and 28 days of heat stress. Application of β-sitosterol reduced malondialdehyde (MDA) content significantly at 21 and 28 days of heat stress, and promoted the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) from 14 through 28 days of heat stress. β-Sitosterol effectively improved heat tolerance through suppression of leaf senescence in creeping bentgrass exposed to heat stress in association with the alleviation of membrane lipid peroxidation and activation of the enzymatic antioxidant system.


2022 ◽  
Vol 82 ◽  
Author(s):  
A. C. P. Borges ◽  
J. F. G. Piassão ◽  
S. M. Albani ◽  
E. F. Albertoni ◽  
M. C. Martins ◽  
...  

Abstract Metals and agrochemicals are among the main aquatic contaminants, being able to trigger oxidative stress in exposed organisms. The objective of this work was to evaluate the correlation between the level of oxidative stress biomarkers in Aegla crabs (Crustacea, Anomura) with (i) the set of metals present in the streams sediment and (ii) with land uses of three hydrographic basins. The study was carried out in streams (≤ 2nd order) of hydrographic basins in southern Brazil (Basins of Rio Suzana, Rio Ligeirinho-Leãozinho and Rio Dourado). In these streams were quantified the land uses and Cu, Cr, Cd, Fe, Mn and Zn concentrations in the sediment. The enzymes Catalase (CAT) and Glutathione Reductase (GR), as well as the level of membrane lipid peroxidation (TBARS), were analyzed in adult females. The PCA analysis showed that the distribution of metals was different between the basins. Cd, Cr and Fe were correlated positively with CAT and negatively with TBARS and GR. The Dourado basin had the lowest concentrations of these three metals and the highest levels of TBARS. However, in Dourado basin there is predominance of agriculture land use, and TBARS was positively correlated with agricultural land use. Besides in Dourado basin, GR activity was higher than in the others basins, indicating a compensatory response in relation to CAT inhibition. The basins of Suzana and Ligeirinho-Leãozinho rivers had lower TBARS values, which may be due to the induction of CAT in response to metals accumulated in sediment. In summary, this work indicates that in the basins with a higher concentration of toxic metals there is an adaptive response of CAT induction, which reduces TBARS in Aegla. On the other hand, in the basin with lower metallic contamination, TBARS occurrence was primarily influenced by agricultural land use.


2022 ◽  
Vol 6 ◽  
Author(s):  
Yuqing Ma ◽  
Shunqing Hu ◽  
Guifang Chen ◽  
Yonghua Zheng ◽  
Peng Jin

Abstract Objectives The work intended to reveal the effect of cold shock (CS) treatment on chilling injury (CI), antioxidant capacity, and membrane fatty acid of peach fruit. Materials and methods Peaches were soaked in ice water (0 °C) for 10 min and stored at 5 °C for 28 days for determination, except CI, and then stored for 3 days at 20 °C, only CI was measured. The electrolyte leakage (EL) was measured by conductivity meter. The activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, catalase, and peroxidase) and key enzymes of membrane lipid metabolism (phospholipase D, lipase, and lipoxygenase) as well as reactive oxygen species (ROS; O2·– and H2O2) were measured with a spectrophotometer. An ELISA kit and gas chromatography were used to determine membrane lipids and membrane fatty acids. The relative gene expression was measured by real-time polymerase chain reaction analysis. Results The results showed that CS treatment effectively delayed CI, suppressed the increase of EL and malondialdehyde content. Meanwhile, CS-treated fruit exhibited lower level of ROS and higher activities of antioxidant enzymes. Furthermore, CS treatment inhibited the activities as well as the relative gene expression of key enzymes in membrane lipid metabolism. CS-treated fruits maintained higher membrane fatty acid unsaturation and lower phosphatidic acid content. Conclusions These results indicated that CS treatment effectively alleviated CI and maintained the integrity of cell membranes by inducing antioxidant-related enzyme activity and maintaining a higher ratio of unsaturated fatty acids to saturated fatty acids.


Sign in / Sign up

Export Citation Format

Share Document