scholarly journals Biomechanical Evaluation of the Monoaxial Pedicle Screw and Plate Construct for Minimally Invasive Transforaminal Lumbar Interbody Fusion after Decompressive Surgery

2014 ◽  
Vol 4 (1_suppl) ◽  
pp. s-0034-1376664-s-0034-1376664
Author(s):  
Y. Zhou ◽  
J. Li ◽  
Q. Zhu ◽  
C. Li ◽  
H. Liu ◽  
...  
2005 ◽  
Vol 3 (3) ◽  
pp. 218-223 ◽  
Author(s):  
Jee-Soo Jang ◽  
Sang-Ho Lee

Object. The purpose of this study was to introduce a minimally invasive transforaminal lumbar interbody fusion (TLIF) technique that involves ipsilateral pedicle screw (PS) and contralateral facet screw (FS) fixation. Methods. Eight men and 15 women (mean age 59.5 years, range 48–68) underwent the aforementioned TLIF procedure for degenerative spondylolisthesis and uni- or bilateral radiculopathy. Twenty-two patients underwent one-level fusion and one patient two-level fusion (L4—S1). In all cases the various procedures were undertaken via one small incision. There were no intraoperative complications. The mean estimated blood loss (EBL) was 310 ml, and the mean operative time was 150 minutes in cases of one-level fusion. The follow-up period ranged from 13 to 28 months (mean 19 months). The mean Numeric Rating Scale score reflected improvement-reductions from 7.5 (back pain) and 7.4 (leg pain) to 2.3 and 0.7, respectively (p < 0.0001). The mean Oswestry Disability Index (ODI) scores also reflected improved status (ODI of 33.1 before the surgery to 7.6 after the surgery; p < 0.0001). Examination indicated that 22 of 24 fusion sites exhibited osseous union. At the last follow-up examination, satisfactory outcomes were observed in 21 out of 23 patients. Conclusions. The TLIF with ipsilateral PS and contralateral FS fixation has the advantages over the conventional TLIF of reduced EBL and diminished soft-tissue injury.


2013 ◽  
Vol 35 (v2supplement) ◽  
pp. Video4 ◽  
Author(s):  
Kevin S. Chen ◽  
Khoi D. Than ◽  
Frank LaMarca ◽  
Paul Park

This video describes a minimally invasive approach for treatment of symptomatic grade I spondylolisthesis and high-grade spinal stenosis. In this procedure, a unilateral approach for bilateral decompression is utilized in conjunction with a modified transforaminal lumbar interbody fusion and percutaneous pedicle screw fixation. The key steps in the procedure are outlined, and include positioning, fluoroscopic positioning/guidance, exposure with tubular retractor system, technique for ipsilateral and contra-lateral decompression, disc space preparation and interbody grafting, percutaneous pedicle screw and rod placement, and closure.The video can be found here: http://youtu.be/QTymO4Cu4B0.


2013 ◽  
Vol 18 (4) ◽  
pp. 356-361 ◽  
Author(s):  
Darryl Lau ◽  
Samuel W. Terman ◽  
Rakesh Patel ◽  
Frank La Marca ◽  
Paul Park

Object A reported risk factor for adjacent-segment disease is injury to the superior facet joint from pedicle screw placement. Given that the facet joint is not typically visualized during percutaneous pedicle screw insertion, there is a concern for increased facet violation (FV) in minimally invasive fusion procedures. The purpose of this study was to analyze and compare the incidence of FV among patients undergoing minimally invasive transforaminal lumbar interbody fusion (MITLIF) and open transforaminal lumbar interbody fusion (TLIF). The impact of O-arm navigation compared with traditional fluoroscopy on FV in MITLIF is also assessed, as are risk factors for FV. Methods The authors identified a consecutive population of patients who underwent MITLIF with percutaneous pedicle screw placement, as well as a matched cohort of patients who underwent open TLIF. Postoperative CT imaging was assessed to determine intraarticular FV due to pedicle screw placement. Patients were stratified into minimally invasive and open TLIF groups. Within the MITLIF group, the authors performed a subanalysis of image guidance methods used in cases of FV. Two-tailed Student t-test, ANOVA, chi-square testing, and logistic regression were used for statistical analysis. Results A total of 282 patients were identified, with a total of 564 superior pedicle screw placements. The MITLIF group consisted of 142 patients with 284 screw insertions. The open TLIF group consisted of 140 patients with 280 screw insertions. Overall, 21 (7.4%) of 282 patients experienced FV. A total of 21 screws violated a facet joint for a screw-based FV rate of 3.7% (21 of 564 screws). There were no significant differences between the MITLIF and open TLIF groups in the percentage of patients with FV (6.3% vs 8.6%) and or the percentage of screws with FV (3.2% vs 4.3%) (p = 0.475 and p = 0.484, respectively). Further stratifying the MI group into O-arm navigation and fluoroscopic guidance subgroups, the patient-based rates of FV were 10.8% (4 of 37 patients) and 4.8% (5 of 105 patients), respectively, and the screw-based rates of FV were 5.4% (4 of 74 screws) and 2.4% (5 of 210 screws), respectively. There was no significant difference between the subgroups with respect to patient-based or screw-based FV rates (p = 0.375 and p = 0.442, respectively). The O-arm group had a significantly higher body mass index (BMI) (p = 0.021). BMI greater than 29.9 was independently associated with higher FV (OR 2.36, 95% CI 1.65–8.53, p = 0.039). Conclusions The findings suggest that minimally invasive pedicle screw placement is not associated with higher rates of FV. Overall violation rates were similar in MITLIF and open TLIF. Higher BMI, however, was a risk factor for increased FV. The use of O-arm fluoroscopy with computer-assisted guidance did not significantly decrease the rate of FV.


2016 ◽  
Vol 12 (3) ◽  
pp. 203-213
Author(s):  
Wilson Z Ray ◽  
Ian G Dorward ◽  
Robert L Masson

Abstract BACKGROUND Minimally invasive spine surgery (MIS) has undergone tremendous progress in the past 2 decades. The intervertebral micro access surgery (iMAS) technique represents a hybrid of both open and minimally invasive techniques. OBJECTIVE To describe the surgical technique and operative nuances of the iMAS technique. METHODS We describe a novel operative approach for the standard transforaminal lumbar interbody fusion with pedicle screw fixation. Described are the preoperative planning, incision and approach, pedicle screw insertion, facetectomy and discectomy, transforaminal interbody placement, and direct decompression. RESULTS Early experience suggests that iMAS is well suited for the same degenerative conditions currently treated with open or MIS transforaminal lumbar interbody fusion, including grade I spondylolisthesis, unilateral synovial cysts with instability, unilateral disc herniations with instability, and recurrent disc herniations. CONCLUSION The novel integration of both open and MIS techniques makes iMAS an attractive approach for select degenerative lumbar disease processes. Similar to other MIS procedures, minimal tissue disruption may allow for more rapid patient recovery, reduced blood loss, and reduced length of hospital stay.


Sign in / Sign up

Export Citation Format

Share Document