Self-Damping Mechanism in Blood Coagulation

1974 ◽  
Vol 32 (01) ◽  
pp. 057-064 ◽  
Author(s):  
Y Nemerson ◽  
S.A Silverberg ◽  
J Jesty

SummaryTwo reactions of the extrinsic pathway of coagulation, the activations of Factor X and prothrombin, have been studied in purified systems and shown to be self-damping. Factor X was activated by the tissue factor - Factor VII complex, and prothrombin by two systems: the coagulant protein of Taipan venom, and the physiological complex of activated Factor X, Factor V, lipid, and calcium ions. In each case the yield of enzyme, activated Factor X or thrombin, is a function of the concentration of activator. These and other observations are considered as a basis for a control mechanism in coagulation.

1990 ◽  
Vol 265 (2) ◽  
pp. 327-336 ◽  
Author(s):  
V J J Bom ◽  
R M Bertina

In the extrinsic pathway of blood coagulation, Factor X is activated by a complex of tissue factor, factor VII(a) and Ca2+ ions. Using purified human coagulation factors and a sensitive spectrophotometric assay for Factor Xa, we could demonstrate activation of Factor X by Factor VIIa in the absence of tissue-factor apoprotein, phospholipids and Ca2+. This finding allowed a kinetic analysis of the contribution of each of the cofactors. Ca2+ stimulated the reaction rate 10-fold at an optimum of 6 mM (Vmax. of 1.1 x 10(-3) min-1) mainly by decreasing the Km of Factor X (to 11.4 microM). In the presence of Ca2+, 25 microM-phospholipid caused a 150-fold decrease of the apparent Km and a 2-fold increase of the apparent Vmax. of the reaction; however, both kinetic parameters increased with increasing phospholipid concentration. Tissue-factor apoprotein contributed to the reaction rate mainly by an increase of the Vmax., in both the presence (40,500-fold) and absence (4900-fold) of phospholipid. The formation of a ternary complex of Factor VIIa with tissue-factor apoprotein and phospholipid was responsible for a 15 million-fold increase in the catalytic efficiency of Factor X activation. The presence of Ca2+ was absolutely required for the stimulatory effects of phospholipid and apoprotein. The data fit a general model in which the Ca2(+)-dependent conformation allows Factor VIIa to bind tissue-factor apoprotein and/or a negatively charged phospholipid surface resulting into a decreased intrinsic Km and an increased Vmax. for the activation of fluid-phase Factor X.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 645-651 ◽  
Author(s):  
LV Rao ◽  
SI Rapaport

Abstract We have extended earlier studies (Blood 66:204, 1985) of a mechanism of inhibition of factor VIIa/tissue factor activity that requires a plasma component (called herein extrinsic pathway inhibitor or EPI) and factor Xa. An activated peptide release assay using 3H-factor IX as a substrate was used to evaluate inhibition. Increasing the tissue factor concentration from 20% to 40% (vol/vol) overcame the inhibitory mechanism in normal plasma but not in factor VII-deficient plasma supplemented with a low concentration of factor VII. A second wave of factor IX activation obtained by a second addition of tissue factor to plasma with a normal factor VII concentration was almost abolished by supplementing the reaction mixture with additional EPI and factor X. Factor Xa's active site was necessary for factor Xa's contribution to inhibition, but preliminary incubation of factor Xa with EPI in the absence of factor VIIa/tissue factor complex or of factor VIIa/tissue factor complex in the absence of EPI did not replace the need for the simultaneous presence of factor Xa, factor VIIa/tissue factor, calcium, and EPI in an inhibitory reaction mixture. Inhibition of factor VIIa/tissue factor was reversible; both tissue factor and factor VIIa activity could be recovered from a dissociated, inhibited factor VIIa/tissue factor complex. EPI appeared to bind to a factor VIIa/tissue factor complex formed in the presence of factor Xa but not to a factor VIIa/tissue factor complex formed in the absence of factor Xa.


1987 ◽  
Author(s):  
A Blanco ◽  
R Bonfil ◽  
O Bustoabad ◽  
M Lazzari

Increased deposition and lysis of fibrin, associated with malignant tissue, has led to look for activators of both the coagulation and fibrinolytic systems produced by tumor cells. We report the evidences of a procoagblant activity (PA) in the extracts of intratumoral necrosis from two experimental breast adenocarcinomas in murine model (BALB/c). The tumors have different metastatic capacity (MC). M3 without MC and MM3 with high MC.The addition of the extracts to: 1- Normal Plasma, 2- Deficient substrates in coagulation factors, 3- Purified, fibrinogen (I), showed: 1- Shortening of the plasma recalcification time (PRT) and APTT, without ;modification on prothrombin time (PT), 2- Reduction of the PRT on deficient substrates in factors: VIII; VII; VII and X; V; V, VII and X; without modification on II deficient substrate, 3- No PA on I. Table:C: Control, s: seconds, m: minutes. The PA was not affected by heparin. The results suggest that the PA is independent of the presence of either factor VIII or factor VII (intrinsic or extrinsic pathway respectively), as well as presence of either factor V or factor X. Any effect was observed either on factor II deficient substrate or on I, so, there was no evidence of thrombin activity The PA could be act directly on factor II, suggesting that fibrin formation could be induced by a “non-classical” activation pathway. No significant differences (p>0.5) in PA were observed between both tumoral necrosis extracts. The necrotic area in M3 (37%) is bigger than in MM3 (18%). So, much more PA could be present in MM3 and this could play a role in the MC of this tumor.


2019 ◽  
Vol 476 (19) ◽  
pp. 2909-2926
Author(s):  
Tina M. Misenheimer ◽  
Kraig T. Kumfer ◽  
Barbara E. Bates ◽  
Emily R. Nettesheim ◽  
Bradford S. Schwartz

Abstract The mechanism of generation of factor VIIa, considered the initiating protease in the tissue factor-initiated extrinsic limb of blood coagulation, is obscure. Decreased levels of plasma VIIa in individuals with congenital factor IX deficiency suggest that generation of VIIa is dependent on an activation product of factor IX. Factor VIIa activates IX to IXa by a two-step removal of the activation peptide with cleavages occurring after R191 and R226. Factor IXaα, however, is IX cleaved only after R226, and not after R191. We tested the hypothesis that IXaα activates VII with mutant IX that could be cleaved only at R226 and thus generate only IXaα upon activation. Factor IXaα demonstrated 1.6% the coagulant activity of IXa in a contact activation-based assay of the intrinsic activation limb and was less efficient than IXa at activating factor X in the presence of factor VIIIa. However, IXaα and IXa had indistinguishable amidolytic activity, and, strikingly, both catalyzed the cleavage required to convert VII to VIIa with indistinguishable kinetic parameters that were augmented by phospholipids, but not by factor VIIIa or tissue factor. We propose that IXa and IXaα participate in a pathway of reciprocal activation of VII and IX that does not require a protein cofactor. Since both VIIa and activated IX are equally plausible as the initiating protease for the extrinsic limb of blood coagulation, it might be appropriate to illustrate this key step of hemostasis as currently being unknown.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 645-651 ◽  
Author(s):  
LV Rao ◽  
SI Rapaport

We have extended earlier studies (Blood 66:204, 1985) of a mechanism of inhibition of factor VIIa/tissue factor activity that requires a plasma component (called herein extrinsic pathway inhibitor or EPI) and factor Xa. An activated peptide release assay using 3H-factor IX as a substrate was used to evaluate inhibition. Increasing the tissue factor concentration from 20% to 40% (vol/vol) overcame the inhibitory mechanism in normal plasma but not in factor VII-deficient plasma supplemented with a low concentration of factor VII. A second wave of factor IX activation obtained by a second addition of tissue factor to plasma with a normal factor VII concentration was almost abolished by supplementing the reaction mixture with additional EPI and factor X. Factor Xa's active site was necessary for factor Xa's contribution to inhibition, but preliminary incubation of factor Xa with EPI in the absence of factor VIIa/tissue factor complex or of factor VIIa/tissue factor complex in the absence of EPI did not replace the need for the simultaneous presence of factor Xa, factor VIIa/tissue factor, calcium, and EPI in an inhibitory reaction mixture. Inhibition of factor VIIa/tissue factor was reversible; both tissue factor and factor VIIa activity could be recovered from a dissociated, inhibited factor VIIa/tissue factor complex. EPI appeared to bind to a factor VIIa/tissue factor complex formed in the presence of factor Xa but not to a factor VIIa/tissue factor complex formed in the absence of factor Xa.


2003 ◽  
Vol 89 (03) ◽  
pp. 420-428 ◽  
Author(s):  
Colin Davidson ◽  
Robert Hirt ◽  
Kalpana Lal ◽  
Philip Snell ◽  
Greg Elgar ◽  
...  

SummaryIn mammalian blood coagulation 5 proteases, factor VII (FVII), factor IX (FIX), factor X (FX), protein C (PC) and prothrombin act with two cofactors factor V and factor VIII to control the generation of fibrin. Biochemical evidence and molecular cloning data have previously indicated that blood coagulation involving tissue factor, prothrombin and fibrinogen is present in all vertebrates. Using degenerate RT-PCR we have isolated and characterized novel cDNAs with sequence identity to the blood coagulation serine proteases and cofactors from chicken and the puffer fish (Fugu rubripes). Sequence alignments, phylogenetic and comparative sequence analysis all support the existence of the Gla-EGF1-EGF2-SP domain serine proteases FVII, FIX, FX, PC and the A1-A2-B-A3-C1-C2 domain protein cofactors FV and FVIII in these species. These results strongly suggest that the blood coagulation network is present in all jawed vertebrates and evolved before the divergence of tetrapods and teleosts over 430 million years ago; and that vertebrate blood coagulation may have benefited from two rounds of gene or whole genome duplication. Sequences identified in Fugu coding for additional FVII-like, FIX-like and PC-like sequences support the possibility of further tandem and large-scale duplications in teleosts. Comparative sequence analyses of amino acid residues in the active site region suggest these additional sequences have evolved new and as yet unknown functions.Supplementary information to this article available at both http://europium.csc.mrc.ac.uk and www.thrombosis-online.com


2013 ◽  
Vol 11 (3) ◽  
pp. 503-511 ◽  
Author(s):  
R. Al Dieri ◽  
S. Bloemen ◽  
H. Kelchtermans ◽  
R. Wagenvoord ◽  
H. C. Hemker

2011 ◽  
Vol 101 (8) ◽  
pp. 1816-1824 ◽  
Author(s):  
A.N. Balandina ◽  
A.M. Shibeko ◽  
D.A. Kireev ◽  
A.A. Novikova ◽  
I.I. Shmirev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document