scholarly journals Single-Step Resection of Sphenoorbital Meningiomas and Orbital Reconstruction Using Customized CAD/CAM Implants

2019 ◽  
Vol 81 (02) ◽  
pp. 142-148
Author(s):  
Lukas Goertz ◽  
Pantelis Stavrinou ◽  
George Stranjalis ◽  
Marco Timmer ◽  
Roland Goldbrunner ◽  
...  

Abstract Objective Computer-aided design and manufacturing (CAD/CAM) implants are fabricated based on volumetric analysis of computed tomography (CT) scans and are routinely used for the reconstruction of orbital fractures. We present three cases of patients with sphenoorbital meningiomas that underwent tumor resection, orbital decompression, and orbital reconstruction with patient specific porous titanium or acrylic implants in a single procedure. Methods The extent of bone resection of the sphenoorbital meningiomas was planned in a virtual three-dimensional (3D) environment using preoperative thin-layer CT data. The anatomy of the orbital wall in the resection area was reconstructed by superimposing the contralateral unaffected orbit and by using the information of the neighboring bony structures. The customized implants and a corresponding craniotomy template were designed in the desired size and shape by the manufacturer. Results All patients presented with a sphenoorbital meningioma and exophthalmos. After osteoclastic craniotomy with the drilling template, orbital decompression was performed. Implant fitting was tight in two cases and could be easily fixated with miniplates and screws. In the third patient, a reoperation was necessary for additional bone resection, as well as drilling and repositioning of the implant. The postoperative CT scans showed an accurate reconstruction of the orbital wall. After surgery, exophthalmos was substantially reduced and a satisfying cosmetic result could be finally achieved in all patients. Conclusions The concept of preoperative 3D virtual treatment planning and single-step orbital reconstruction with CAD/CAM implants after tumor resection involving the orbit is well feasible and can lead to good cosmetic results.

2018 ◽  
Vol 20 (suppl_3) ◽  
pp. iii320-iii320
Author(s):  
B Krischek ◽  
L Goertz ◽  
M TImmer ◽  
R Goldbrunner ◽  
P Stavrinou

2014 ◽  
Vol 7 (2) ◽  
pp. 158-166 ◽  
Author(s):  
Frank Wilde ◽  
Carl-Peter Cornelius ◽  
Alexander Schramm

We investigated the workflow of computer-assisted mandibular reconstruction that was performed with a patient-specific mandibular reconstruction plate fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM) techniques and a fibula flap. We assessed the feasibility of this technique from virtual planning to the completion of surgery. Computed tomography (CT) scans of a cadaveric skull and fibula were obtained for the virtual simulation of mandibular resection and reconstruction using ProPlan CMF software (Materialise®/DePuy Synthes®). The virtual model of the reconstructed mandible provided the basis for the computer-aided design of a patient-specific reconstruction plate that was milled from titanium using a five-axis milling machine and CAM techniques. CAD/CAM techniques were used for producing resection guides for mandibular resection and cutting guides for harvesting a fibula flap. Mandibular reconstruction was simulated in a cadaveric wet laboratory. No problems were encountered during the procedure. The plate was fixed accurately to the residual bone without difficulty. The fibula segments were attached to the plate rapidly and reliably. The fusion of preoperative and postoperative CT datasets demonstrated high reconstruction precision. Computer-assisted mandibular reconstruction with CAD/CAM-fabricated patient-specific reconstruction plates appears to be a promising approach for mandibular reconstruction. Clinical trials are required to determine whether these promising results can be translated into successful practice and what further developments are needed.


2018 ◽  
Vol 20 (suppl_6) ◽  
pp. vi152-vi153
Author(s):  
Boris Krischek ◽  
Lukas Goertz ◽  
Marco Timmer ◽  
Roland Goldbrunner ◽  
Pantelis Stavrinou

2000 ◽  
Vol 29 (5) ◽  
pp. 384-388 ◽  
Author(s):  
Stephan Weihe ◽  
Michael Wehmöller ◽  
Henning Schliephake ◽  
Stefan Haßfeld ◽  
Alexander Tschakaloff ◽  
...  

Author(s):  
Ming C. Leu ◽  
Amit Gawate

Implant based dental restorations have many advantages over standard removable dentures because using implants can prevent the loss of jawbones, help restore facial features, and enable the patients to get firm bites. A critical step in this kind of restorations is the fabrication of the dental bar on which the denture sits. A dental bar is patient-specific because each patient’s jawbone is unique and the device needs to be conforming to the patient’s gingival surface. The design of a dental bar is crucial to the success of dental restorations. Traditionally, designing a dental bar is a lengthy and laborious process and requires high levels of craftsmanship. There have been attempts to develop CAD/CAM systems towards automating design and fabrication of dental restorations. However, currently available commercial CAD/CAM systems are only capable of making crowns, bridges, copings, onlays and veneers, and they are not capable of making dental restorations involving multiple teeth. The present paper describes a method for computer aided design of a dental bar used in implant based dental restorations. The method starts with a set of digital scan data representing the patient’s gingival surface and generates a CAD model of a dental bar that is ready for fabrication of a physical dental bar.


2020 ◽  
pp. 1-10 ◽  
Author(s):  
Cecilia L. Dalle Ore ◽  
Stephen T. Magill ◽  
Roberto Rodriguez Rubio ◽  
Maryam N. Shahin ◽  
Manish K. Aghi ◽  
...  

OBJECTIVEHyperostosing sphenoid wing meningiomas cause bony hyperostosis that may extend into the orbit, resulting in proptosis, restriction of extraocular movements, and/or compressive optic neuropathy. The extent of bony removal necessary and the optimal reconstruction strategy to prevent enophthalmos is debated. Herein, the authors present their surgical outcomes and reconstruction results.METHODSThis is a retrospective review of 54 consecutive patients undergoing resection of sphenoid wing meningiomas associated with bony hyperostosis. The majority of cases were operated on by the senior author. Extent of tumor resection, volumetric bone resection, radiographic exophthalmos index, complications, and recurrence were analyzed.RESULTSThe median age of the cohort was 52.1 years, with women comprising 83% of patients. Proptosis was a presenting symptom in 74%, and 52% had decreased visual acuity. The WHO grade was I (85%) or II (15%). The median follow-up was 2.6 years. On volumetric analysis, a median 86% of hyperostotic bone was resected. Gross-total resection of the intracranial tumor was achieved in 43% and the orbital tumor in 27%, and of all intracranial and orbital components in 20%. Orbital reconstruction was performed in 96% of patients. Postoperative vision was stable or improved in 98% of patients and diplopia improved in 89%. Postoperative complications occurred in 44% of patients, and 26% of patients underwent additional surgery for complication management. The most frequent complications were medical complications and extraocular movement deficits. The median preoperative exophthalmos index was 1.26, which improved to 1.12 immediately postoperatively and to 1.09 at the 6-month follow-up (p < 0.001). Postoperatively, 18 patients (33%) underwent adjuvant radiotherapy after subtotal resection. Tumors recurred/progressed in 12 patients (22%).CONCLUSIONSResection of hyperostosing sphenoid wing meningiomas, particularly achieving gross-total resection of hyperostotic bone with a good aesthetic result, is challenging and associated with notable medical and ocular morbidity. Recurrence rates in this series are higher than previously reported. Nevertheless, the authors were able to attain improvement in proptosis and visual symptoms in the majority of patients by using a multidisciplinary approach.


2019 ◽  
Vol 25 (2) ◽  
pp. 397-403 ◽  
Author(s):  
Deepkamal Kaur Gill ◽  
Kartikeya Walia ◽  
Aditi Rawat ◽  
Divya Bajaj ◽  
Vipin Kumar Gupta ◽  
...  

Purpose To relieve intracranial pressure and save patient inflicted with severe head injury, neurosurgeons restore cranial defects. These defects can be caused because of trauma or diseases (Osteomyelitis of bone) which are treated by cranioplasty, using the preserved bone of patient. In case of non-availability of bone, a cranial implant is generated using a biocompatible synthetic material, but this process is less accurate and time-consuming. Hence, this paper aims to present the use of rapid prototyping technology that allows the development of a more accurate patient-specific template and saves the surgery time. Design/methodology/approach A five-year-old girl patient having cranial defect was taken up for cranioplasty. CT (computed tomography) scans of the patient were used to generate 3D design of the implant suitable to conceal the defect on the left frontal portion using CAD/CAM (computer-aided design/ computer-aided manufacturing) software. The design was used for 3D printing to manufacture a base template, which was finally used to fabricate the actual implant using Simplex® P bone cement material to conceal the defect. Findings Surgery using Simplex® P implant was performed successfully on the patient, giving precise natural curvature to left frontal portion of the patient, decreasing surgery time by about 30 per cent. Originality/value The case demonstrates the development of a convenient, time-saving and aesthetically superior digital procedure to treat cranial defect in the absence of preserved bone flap using CT scan as input. 3D modelling and printing were deployed to produce an accurate template which was used to generate an implant using bone cement biocompatible material.


2000 ◽  
Vol 29 (5) ◽  
pp. 384-388
Author(s):  
Stephan Weihe ◽  
Michael Wehmoller ◽  
Henning Schliephake ◽  
Stefan Hassfeld ◽  
Alexander Tschakaloff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document