scan data
Recently Published Documents


TOTAL DOCUMENTS

838
(FIVE YEARS 222)

H-INDEX

35
(FIVE YEARS 4)

2022 ◽  
Vol 135 ◽  
pp. 104135
Author(s):  
Qi Qiu ◽  
Mengjun Wang ◽  
Jingjing Guo ◽  
Ziwen Liu ◽  
Qian Wang
Keyword(s):  

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262579
Author(s):  
Youji Asama ◽  
Akiko Furutani ◽  
Masato Fujioka ◽  
Hiroyuki Ozawa ◽  
Satoshi Takei ◽  
...  

Conductive olfactory dysfunction (COD) is caused by an obstruction in the nasal cavity and is characterized by changeable olfaction. COD can occur even when the olfactory cleft is anatomically normal, and therefore, the cause in these cases remains unclear. Herein, we used computational fluid dynamics to examine olfactory cleft airflow with a retrospective cohort study utilizing the cone beam computed tomography scan data of COD patients. By measuring nasal–nasopharynx pressure at maximum flow, we established a cut-off value at which nasal breathing can be differentiated from combined mouth breathing in COD patients. We found that increased nasal resistance led to mouth breathing and that the velocity and flow rate in the olfactory cleft at maximum flow were significantly reduced in COD patients with nasal breathing only compared to healthy olfactory subjects. In addition, we performed a detailed analysis of common morphological abnormalities associated with concha bullosa. Our study provides novel insights into the causes of COD, and therefore, it has important implications for surgical planning of COD, sleep apnea research, assessment of adenoid hyperplasia in children, and sports respiratory physiology.


Author(s):  
Monica Macrì ◽  
Elena Toniato ◽  
Giovanna Murmura ◽  
Giuseppe Varvara ◽  
Felice Festa

The aim of this paper was to evaluate the changes in the mean bone density values of the midpalatal suture in 392 young patients treated with the Rapid Palatal Expander appliance according to sex, gender, vertical and sagittal skeletal patterns. Materials and Methods. The evaluations were performed using the low-dose protocol cone-beam computed tomography scans at t0 (preoperatively) and t1 (1 year after the beginning of the therapy). The region of interest was used to calculate bone density in Hounsfield units (HU) in the area between the maxillary incisors. Results. CBCT scan data of 196 females and 196 males (mean age of 11,7 years) showed homogeneous and similar density values of the MPS at T0 (547.59 HU - 565.85 HU) and T1 (542.31 - 554.20 HU). Class III skeletal individuals showed a significant higher BD than the II class group at T0, but not at T1. Females showed significantly higher BD than males at t0 and t1. No significant differences were found between the other groups and between two-time points in terms of bone density values of the MPS. Conclusions. Females and III class groups showed significantly higher bone density values than males and II class, respectively. No statistically significant differences were found from T0 to T1 in any groups, suggesting that a similar rate of suture reorganization occurs after the use of the RPE, following reorganization and bone deposition along with the MPS.


2022 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Jason D. Lee ◽  
German O. Gallucci ◽  
Sang J. Lee

With the advent of a digital workflow in dentistry, the inter-occlusal articulation of digital models is now possible through various means. The Cadent iTero intraoral scanner uses a buccal scan in maximum intercuspation to record the maxillomandibular relationship. This in-vitro study compares the occlusion derived from conventionally articulated stone casts versus that of digitally articulated quadrant milled models. Thirty sets of stone casts poured from full arch polyvinyl siloxane impressions (Group A) and thirty sets of polyurethane quadrant models milled from digital impressions (Group B) were used for this study. The full arch stone casts were hand-articulated and mounted on semi-adjustable articulators, while the digitally derived models were pre-mounted from the milling center based on the data obtained from the buccal scanning procedure. A T-scan sensor was used to obtain a bite registration from each set of models in both groups. The T-scan data derived from groups A and B were compared to that from the master model to evaluate the reproducibility of the occlusion in the two groups. A statistically significant difference of the contact region surface area was found on #11 of the digitally articulated models compared to the master. An analysis of the force distribution also showed a tendency for a heavier distribution on the more anterior #11 tooth for the digitally articulated models. Within the limitations of this study, the use of a digitally articulated quadrant model system may result in a loss of accuracy, in terms of occlusion, the further anteriorly the tooth to be restored is located. Care must be taken to consider the sources of inaccuracies in the digital workflow to minimize them for a more efficient and effective restorative process.


2022 ◽  
Author(s):  
Petra C. Bachour ◽  
Robert Klabunde ◽  
Thorsten Grünheid

ABSTRACT Objectives To evaluate the transfer accuracy of 3D-printed indirect bonding trays constructed using a fully digital workflow in vivo. Materials and Methods Twenty-three consecutive patients had their incisors, canines, and premolars bonded using fully digitally designed and 3D-printed transfer trays. Intraoral scans were taken to capture final bracket positioning on teeth after bonding. Digital models of postbonding scans were superimposed on those of corresponding virtual bracket setups, and bracket positioning differences were quantified. A total of 363 brackets were evaluated. One-tailed t-tests were used to determine whether bracket positioning differences were within the limit of 0.5 mm in mesiodistal, buccolingual, and occlusogingival dimensions, and within 2° for torque, tip, and rotation. Results Mean bracket positioning differences were 0.10 mm, 0.10 mm, and 0.18 mm for mesiodistal, buccolingual, and occlusogingival measurements, respectively, with frequencies of bracket positioning within the 0.5-mm limit ranging from 96.4% to 100%. Mean differences were significantly within the acceptable limit for all linear dimensions. Mean differences were 2.55°, 2.01°, and 2.47° for torque, tip, and rotation, respectively, with frequencies within the 2°-limit ranging from 46.0% to 57.0%. Mean differences for all angular dimensions were outside the acceptable limit; however, this may have been due to limitations of scan data. Conclusions Indirect bonding using 3D-printed trays transfers planned bracket position from the digital setup to the patient's dentition with a high positional accuracy in mesiodistal, buccolingual, and occlusogingival dimensions. Questions remain regarding the transfer accuracy for torque, tip, and rotation.


2021 ◽  
Vol 13 (3) ◽  
pp. 111-116
Author(s):  
Nikolaos Papas ◽  
◽  
Konstantinos Tsongas ◽  
Dimitrios Karolidis ◽  
Dimitrios Tzetzis ◽  
...  

Reverse engineering and in particular three-dimensional digitization have become an essential part of the documentation of archaeological findings. 3D scanning produces a high-precision digital reference document. The factors that influence the quality of the 3D scanned data are the scanned object’s surface colour, its glossiness and geometry, and the ambient light during the scanning process. However, the actual equipment and scanning technologies are of primary importance. The current paper presents a qualitative and quantitative comparison between two 3D scanning devices of different technologies; structured light 3D scanning and laser 3D scanning. The benchmark for this comparison is an ancient Roman vase from the city of Thessaloniki, Greece. The object was scanned with every possible setting on each scanner, but only one configuration of settings on each device was selected for the final comparison. The main criterion for the final selection of the two 3D models acquired with the use of the two technologies was the proximity in the number of points and polygons produced for digitally restoring the ancient vase in the best possible way. The results indicate important differences regarding the accuracy of the final digital model. The laser technology produced better accuracy but with a significant cost in scanning time and model data size. On the other hand, the structured light technology achieved the optimal combination of scanning quality and accuracy, along with reduced acquisition time of scan data.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1931
Author(s):  
Chiara Colarusso ◽  
Angelantonio Maglio ◽  
Michela Terlizzi ◽  
Carolina Vitale ◽  
Antonio Molino ◽  
...  

Purpose: SARS-CoV-2 infection induces in some patients a condition called long-COVID-19, herein post-COVID-19 (PC), which persists for longer than the negative oral-pharyngeal swab. One of the complications of PC is pulmonary fibrosis. The purpose of this study was to identify blood biomarkers to predict PC patients undergoing pulmonary fibrosis. Patients and Methods: We analyzed blood samples of healthy, anti-SARS-CoV-2 vaccinated (VAX) subjects and PC patients who were stratified according to the severity of the disease and chest computed tomography (CT) scan data. Results: The inflammatory C reactive protein (CRP), complement complex C5b-9, LDH, but not IL-6, were higher in PC patients, independent of the severity of the disease and lung fibrotic areas. Interestingly, PC patients with ground-glass opacities (as revealed by chest CT scan) were characterized by higher plasma levels of IL-1α, CXCL-10, TGF-β, but not of IFN-β, compared to healthy and VAX subjects. In particular, 19 out of 23 (82.6%) severe PC and 8 out of 29 (27.6%) moderate PC patients presented signs of lung fibrosis, associated to lower levels of IFN-β, but higher IL-1α and TGF-β. Conclusions: We found that higher IL-1α and TGF-β and lower plasma levels of IFN-β could predict an increased relative risk (RR = 2.8) of lung fibrosis-like changes in PC patients.


2021 ◽  
pp. 483-496
Author(s):  
S. M. Shafkat Raihan ◽  
Raihan Ul Islam ◽  
Mohammad Shahadat Hossain ◽  
Karl Andersson
Keyword(s):  
Ct Scan ◽  

Abstract Solar monitoring is a method in which solar interferences, recorded during operational scanning of a radar, are used to monitor antenna pointing, identify signal processor issues, track receiver chain stability, and check the balance between horizontal and vertical polarization receive channels. The method is used by Eumetnet to monitor more than 100 radars in twenty European countries and it has been adopted by many national weather services across the world. NEXRAD is a network of 160 similar S-band weather radars (WSR-88Ds), which makes it most suitable for assessing the capability of the solar monitoring method on a continental scale. The NEXRAD Level-II data contain radial-by-radial noise power estimates. An increase in this estimate is observed when the antenna points close to the sun. Our decoding software extracts these noise power estimates for the horizontal and vertical receive channels (converted to solar flux units) and other relevant metadata, including azimuth, elevation, observation time and radar location. Here we present results of analyzing one year of solar-monitoring data generated by 142 radars from the contiguous United States. We show monitoring results, geographical maps, and statistical outcomes on antenna pointing, solar fluxes, and differential reflectivity biases. We also assess the quality of the radars by defining a Figure of Merit, which is calculated from the solar monitoring results. The results demonstrate that the solar method provides great benefit for routine monitoring and harmonization of national and transnational operational radar networks.


2021 ◽  
pp. 1-18
Author(s):  
Andres Gonzalez ◽  
Zoya Heidari ◽  
Olivier Lopez

Summary Core measurements are used for rock classification and improved formation evaluation in both cored and noncored wells. However, the acquisition of such measurements is time-consuming, delaying rock classification efforts for weeks or months after core retrieval. On the other hand, well-log-based rock classification fails to account for rapid spatial variation of rock fabric encountered in heterogeneous and anisotropic formations due to the vertical resolution of conventional well logs. Interpretation of computed tomography (CT) scan data has been identified as an attractive and high-resolution alternative for enhancing rock texture detection, classification, and formation evaluation. Acquisition of CT scan data is accomplished shortly after core retrieval, providing high-resolution data for use in petrophysical workflows in relatively short periods of time. Typically, CT scan data are used as two-dimensional (2D) cross-sectional images, which is not suitable for quantification of three-dimensional (3D) rock fabric variation, which can increase the uncertainty in rock classification using image-based rock-fabric-related features. The methods documented in this paper aim to quantify rock-fabric-related features from whole-core 3D CT scan image stacks and slabbed whole-core photos using image analysis techniques. These quantitative features are integrated with conventional well logs and routine core analysis (RCA) data for fast and accurate detection of petrophysical rock classes. The detected rock classes are then used for improved formation evaluation. To achieve the objectives, we conducted a conventional formation evaluation. Then, we developed a workflow for preprocessing of whole-core 3D CT-scan image stacks and slabbed whole-core photos. Subsequently, we used image analysis techniques and tailor-made algorithms for the extraction of image-based rock-fabric-related features. Then, we used the image-based rock-fabric-related features for image-based rock classification. We used the detected rock classes for the development of class-based rock physics models to improve permeability estimates. Finally, we compared the detected image-based rock classes against other rock classification techniques and against image-based rock classes derived using 2D CT scan images. We applied the proposed workflow to a data set from a siliciclastic sequence with rapid spatial variations in rock fabric and pore structure. We compared the results against expert-derived lithofacies, conventional rock classification techniques, and rock classes derived using 2D CT scan images. The use of whole-core 3D CT scan image-stacks-based rock-fabric-related features accurately captured changes in the rock properties within the evaluated depth interval. Image-based rock classes derived by integration of whole-core 3D CT scan image-stacks-based and slabbed whole-core photos-based rock-fabric-related features agreed with expert-derived lithofacies. Furthermore, the use of the image-based rock classes in the formation evaluation of the evaluated depth intervals improved estimates of petrophysical properties such as permeability compared to conventional formation-based permeability estimates. A unique contribution of the proposed workflow compared to the previously documented rock classification methods is the derivation of quantitative features from whole-core 3D CT scan image stacks, which are conventionally used qualitatively. Furthermore, image-based rock-fabric-related features extracted from whole-core 3D CT scan image stacks can be used as a tool for quick assessment of recovered whole core for tasks such as locating best zones for extraction of core plugs for core analysis and flagging depth intervals showing abnormal well-log responses.


Sign in / Sign up

Export Citation Format

Share Document