Rapid Prototyping Journal
Latest Publications


TOTAL DOCUMENTS

1718
(FIVE YEARS 542)

H-INDEX

83
(FIVE YEARS 11)

Published By Emerald (Mcb Up )

1355-2546

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Martins Ugonna Obi ◽  
Patrick Pradel ◽  
Matt Sinclair ◽  
Richard Bibb

Purpose The purpose of this paper is to understand how Design for Additive manufacturing Knowledge has been developing and its significance to both academia and industry. Design/methodology/approach In this paper, the authors use a bibliometric approach to analyse publications from January 2010 to December 2020 to explore the subject areas, publication outlets, most active authors, geographical distribution of scholarly outputs, collaboration and co-citations at both institutional and geographical levels and outcomes from keywords analysis. Findings The findings reveal that most knowledge has been developed in DfAM methods, rules and guidelines. This may suggest that designers are trying to learn new ways of harnessing the freedom offered by AM. Furthermore, more knowledge is needed to understand how to tackle the inherent limitations of AM processes. Moreover, DfAM knowledge has thus far been developed mostly by authors in a small number of institutional and geographical clusters, potentially limiting diverse perspectives and synergies from international collaboration which are essential for global knowledge development, for improvement of the quality of DfAM research and for its wider dissemination. Originality/value A concise structure of DfAM knowledge areas upon which the bibliometric analysis was conducted has been developed. Furthermore, areas where research is concentrated and those that require further knowledge development are revealed.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jose Manuel Sierra ◽  
Maria del Rocio Fernandez ◽  
Jose Ignacio Ignacio Rodriguez Garcia ◽  
Jose Luis Cortizo ◽  
Marta María Villazon

Purpose This paper describes the evolution of the design of a mechanical distractor fabricated using additive manufacturing (AM) technology for use in surgical procedures, such as transanal endoscopic microsurgery (TEM). The functionality of the final device was analysed and the suitability of different materials was determined. Design/methodology/approach Solid modelling and finite element modelling software were used in the design and validation process to allow the fabrication of the device by AM. Several prototypes were manufactured and tested in this study. Findings A new design was developed to greatly simplify the existing devices used in TEM surgery. The new design is easy to use, more economical and does not require pneumorectum. Different AM materials were investigated with regard to their mechanical properties, orientation of parts in the three-dimensional (3D) printer and cytotoxicity to select the optimal material for the design. Social implications The device designed by AM can be printed anywhere in the world, provided that a 3D printer is available; the 3D printer does not have to be a high-performance printer. This makes surgery more accessible, particularly in low-income regions. Moreover, patient recovery is improved and pneumorectum is not required. Originality/value A suitable mechanical distractor was designed for TEM, and different materials were validated for fabrication by AM.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chanun Suwanpreecha ◽  
Anchalee Manonukul

Purpose The purpose of this paper is to systematically investigate the influence of build orientation on the anisotropic as-printed and as-sintered bending properties of 17-4PH stainless steel fabricated by metal fused filament fabrication (MFFF). Design/methodology/approach The bending properties of 17-4PH alloy fabricated by low-cost additive manufacturing (MFFF) using three build orientations (the Flat, On-edge and Upright orientations) are examined at both as-printed and as-sintered states. Findings Unlike tensile testing where the Flat and On-edge orientations provide similar as-sintered tensile properties, the On-edge orientation produces a significantly higher bending strain with a lower bending strength than the Flat orientation. This arises from the printed layer sliding due to the Poisson's effect, which is only observed in the On-edge orientation together with the alternated layers of highly deformed and shifted voids. The bending properties show that the Upright orientation exhibits the lowest bending properties and limited plasticity due to the layer delamination. Originality/value This study is the first work to study the effect of build orientation on the flexural properties for MFFF. This work gives insight information into anisotropy in flexural mode for MFFF part design.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chia-Hung Hung ◽  
Tunay Turk ◽  
M. Hossein Sehhat ◽  
Ming C. Leu

Purpose This paper aims to present the development and experimental study of a fully automated system using a novel laser additive manufacturing technology called laser foil printing (LFP), to fabricate metal parts layer by layer. The mechanical properties of parts fabricated with this novel system are compared with those of comparable methodologies to emphasize the suitability of this process. Design/methodology/approach Test specimens and parts with different geometries were fabricated from 304L stainless steel foil using an automated LFP system. The dimensions of the fabricated parts were measured, and the mechanical properties of the test specimens were characterized in terms of mechanical strength and elongation. Findings The properties of parts fabricated with the automated LFP system were compared with those of parts fabricated with the powder bed fusion additive manufacturing methods. The mechanical strength is higher than those of parts fabricated by the laser powder bed fusion and directed energy deposition technologies. Originality/value To the best knowledge of authors, this is the first time a fully automated LFP system has been developed and the properties of its fabricated parts were compared with other additive manufacturing methods for evaluation.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Andrey Kozhevnikov ◽  
Rudie P.J. Kunnen ◽  
Gregor E. van Baars ◽  
Herman J.H. Clercx

Purpose This study aims to examine the feasibility of feedforward actuation of the recoater blade position to alleviate the resin surface non-uniformity while moving over deep-to-shallow transitions of submerged (already cured) geometric features. Design/methodology/approach A two-dimensional computational fluid dynamics (CFD) model has been used to determine optimized blade actuation protocols to minimize the resin surface non-uniformity. An experimental setup has been designed to validate the feasibility of the proposed protocol in practice. Findings A developed protocol for the blade height actuation is applied to a rectangular stair-like configuration of the underlying part geometry. The evaluation of the actuation protocol revealed the importance of two physical length scales, the capillary length and the size of the flow recirculation cell below in the liquid resin layer below the blade. They determine, together with the length scales defining the topography (horizontal extent and depth), the optimal blade trajectory. This protocol has also shown its efficiency for application to more complicated shapes (and, potentially, for any arbitrary geometry). Practical implications This study shows that incorporation of a feedforward control scheme in the recoating system might significantly reduce (by up to 80%) the surface unevenness. Moreover, this improvement of performances does not require major modifications of the existing architecture. Originality/value The results presented in this work demonstrate the benefits of the integration of the feedforward control to minimize the leading edge bulges over underlying part geometries in stereolithography.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xushan Zhao ◽  
Yuanxun Wang ◽  
Haiou Zhang ◽  
Runsheng Li ◽  
Xi Chen ◽  
...  

Purpose This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the bead morphology and overlapping coefficient. A better bead topology positively supports the overlapping deposited in multi-beads between layers while actively assisting the subsequent layer's deposition in the wire and arc additive manufacturing (WAAM). Hybrid-deposited and micro-rolling (HDMR) additive manufacturing (AM) technology can smooth the weld bead for improved surface quality. However, the micro-rolling process will change the weld bead profile fitting curve to affect the overlapping coefficient. Design/methodology/approach Weld bead contours for WAAM and HDMR were extracted using line lasers. A comparison of bead profile curves was conducted to determine the influence law of micro-zone rolling on the welding bead contour and fitting curve. Aiming at the optimized overlapping coefficient of weld bead in HDMR AM, the optimal HDMR overlapping coefficient curve was proposed which varies with the reduction based on the best surface flatness. The mathematical model for overlapping in HDMR was checked by comparing the HDMR weld bead contours under different rolling reductions. Findings A fitting function of the bead forming by HDMR AM was proposed based on the law of conservation of mass. The change rule of the HDMR weld bead overlapping spacing with the degree of weld bead rolling reduction was generated using the flat-top transition calculation for this model. Considering the damming-up impact of the first bead, the overlapping coefficient was examined for its effect on layer surface flatness. Originality/value Using the predicted overlapping model, the optimal overlapping coefficients for different rolling reductions can be achieved without experiments. These conclusions can encourage the development of HDMR technology.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chitralekha Nahar ◽  
Pavan Kumar Gurrala

Purpose The thermal behavior at the interfaces (of the deposited strands) during fused filament fabrication (FFF) technique strongly influences bond formation and it is a time- and temperature-dependent process. The processing parameters affect the thermal behavior at the interfaces and the purpose of the paper is to simulate using temperature-dependent (nonlinear) thermal properties rather than constant properties. Design/methodology/approach Nonlinear temperature-dependent thermal properties are used to simulate the FFF process in a simulation software. The finite-element model is first established by comparing the simulation results with that of analytical and experimental results of acrylonitrile butadiene styrene and polylactic acid. Strand temperature and time duration to reach critical sintering temperature for the bond formation are estimated for one of the deposition sequences. Findings Temperatures are estimated at an interface and are then compared with the experimental results, which shows a close match. The results of the average time duration (time to reach the critical sintering temperature) of strands with the defined deposition sequences show that the first interface has the highest average time duration. Varying processing parameters show that higher temperatures of the extruder and envelope along with higher extruder diameter and lower convective heat transfer coefficient will have more time available for bonding between the strands. Originality/value A novel numerical model is developed using temperature-dependent (nonlinear) thermal properties to simulate FFF processes. The model estimates the temperature evolution at the strand interfaces. It helps to evaluate the time duration to reach critical sintering temperature (temperature above which the bond formation occurs) as it cools from extrusion temperature.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ramesh Chand ◽  
Vishal S. Sharma ◽  
Rajeev Trehan ◽  
Munish Kumar Gupta

Purpose A nut bolt joint is a primary device that connects mechanical components. The vibrations cause bolted joints to self-loosen. Created by motors and engines, leading to machine failure, and there may be severe safety issues. All the safety issues and self-loosen are directly and indirectly the functions of the accuracy and precision of the fabricated nut and bolt. Recent advancements in three-dimensional (3D) printing technologies now allow for the production of intricate components. These may be used technologies such as 3D printed bolts to create fasteners. This paper aims to investigate dimensional precision, surface properties, mechanical properties and scanning electron microscope (SEM) of the component fabricated using a multi-jet 3D printer. Design/methodology/approach Multi-jet-based 3D printed nut-bolt is evaluated in this paper. More specifically, liquid polymer-based nut-bolt is fabricated in sections 1, 2 and 3 of the base plate. Five nuts and bolts are fabricated in these three sections. Findings Dimensional inquiry (bolt dimension, general dimensions’ density and surface roughness) and mechanical testing (shear strength of nut and bolt) were carried out throughout the study. According to the ISO 2768 requirements for the General Tolerances Grade, the nut and bolt’s dimensional examination (variation in bolt dimension, general dimensions) is within the tolerance grades. As a result, the multi-jet 3D printing (MJP)-based 3D printer described above may be used for commercial production. In terms of mechanical qualities, when the component placement moves from Sections 1 to 3, the density of the manufactured part decreases by 0.292% (percent) and the shear strength of the nut and bolt decreases by 30%. According to the SEM examination, the density of the River markings, sharp edges, holes and sharp edges increased from Sections 1 to 3, which supports the findings mentioned above. Originality/value Hence, this work enlightens the aspects causing time lag during the 3D printing in MJP. It causes variation in the dimensional deviation, surface properties and mechanical properties of the fabricated part, which needs to be explored.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Adelaide Nespoli ◽  
Nicola Bennato ◽  
Elena Villa ◽  
Francesca Passaretti

Purpose This paper aims to investigate the microstructural anisotropy of Ti-6Al-4V samples fabricated by selective laser melting. Design/methodology/approach Specimens are fabricated through a Renishaw AM400 selective laser melting machine. Three microstructures (as-built, 850°C annealed and 1,050°C annealed) and two building orientations, parallel (PA) and perpendicular (PE) to the building platform, are considered. Starting from in-depth microscopic observations and comprehensive electron backscattered diffraction imaging, the study addresses non-conventional techniques such as internal friction and electrical resistivity measurements to assess the anisotropy of the fabricated parts. Findings Microscope observations highlight a fine texture with columnar grains parallel to the building direction in the as-built and 850°C annealed samples. Besides, coarse grains characterized the 1,050°C annealed specimens. Internal friction measurements pointed out the presence of internal stress while storage modulus analyses appear sensitive to texture. Electrical resistivity is resulted to be dependent on grain orientation. Originality/value The work uses some novel characterization techniques to study the anisotropy and internal stresses of Ti-6Al-4V samples processed by selective laser melting. Mechanical spectroscopy results suitable in this kind of study, as it mimics the operating conditions of the material.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pushkar Prakash Kamble ◽  
Subodh Chavan ◽  
Rajendra Hodgir ◽  
Gopal Gote ◽  
K.P. Karunakaran

Purpose Multi-jet deposition of the materials is a matured technology used for graphic printing and 3 D printing for a wide range of materials. The multi-jet technology is fine-tuned for liquids with a specific range of viscosity and surface tension. However, the use of multi-jet for low viscosity fluids like water is not very popular. This paper aims to demonstrate the technique, particularly for the water-ice 3 D printing. 3 D printed ice parts can be used as patterns for investment casting, templates for microfluidic channel fabrication, support material for polymer 3 D printing, etc. Design/methodology/approach Multi-jet ice 3 D printing is a novel technique for producing ice parts by selective deposition and freezing water layers. The paper confers the design, embodiment and integration of various subsystems of multi-jet ice 3 D printer. The outcomes of the machine trials are reported as case studies with elaborate details. Findings The prismatic geometries are realized by ice 3 D printing. The accuracy of 0.1 mm is found in the build direction. The part height tends to increase due to volumetric expansion during the phase change. Originality/value The present paper gives a novel architecture of the ice 3 D printer that produces the ice parts with good accuracy. The potential applications of the process are deliberated in this paper.


Sign in / Sign up

Export Citation Format

Share Document