Recent Advances in Difluoromethylthiolation

Synthesis ◽  
2019 ◽  
Vol 52 (02) ◽  
pp. 197-207 ◽  
Author(s):  
Xuan Xiao ◽  
Zi-Tong Zheng ◽  
Ting Li ◽  
Jing-Lin Zheng ◽  
Ting Tao ◽  
...  

The difluoromethylthio group (HCF2S), which has been identified as a valuable functionality in drug and agrochemical discovery, has received increased attention recently. Two strategies, difluoromethylation and direct difluoromethylthiolation, have been well established for HCF2S incorporation. The former strategy suffers from the need to prepare sulfur-containing substrates. In contrast, direct difluoromethylthiolation is straightforward and step-economic. This short review covers the recent advances in direct difluoromethylthiolation, including electrophilic, radical, and transition-metal-catalyzed or -promoted reactions­.1 Introduction2 Electrophilic Difluoromethylthiolation3 Radical Difluoromethylthiolation4 Transition-Metal-Catalyzed or -Promoted Difluoromethylthiolation5 Conclusions and Perspectives

Synthesis ◽  
2022 ◽  
Author(s):  
Chuan He ◽  
Wei Yuan

In recent years, transition-metal-catalyzed enantioselective C–H bond functionalization has emerged as a powerful and attractive synthetic approach to access silicon-stereogenic centers, which continues to give impetus for the innovation of chiral organosilicon chemistry. This short review is aimed to summarize recent advances in the construction of silicon-stereogenic silanes via transition-metal-catalyzed enantioselective C–H functionalization. We have endeavored to highlight the great potential of this methodology and hope that this review will shed light on new perspectives, inspire further research in this emerging area.


2020 ◽  
Vol 7 (8) ◽  
pp. 1022-1060 ◽  
Author(s):  
Wenbo Ma ◽  
Nikolaos Kaplaneris ◽  
Xinyue Fang ◽  
Linghui Gu ◽  
Ruhuai Mei ◽  
...  

This review summarizes recent advances in C–S and C–Se formations via transition metal-catalyzed C–H functionalization utilizing directing groups to control the site-selectivity.


Synthesis ◽  
2021 ◽  
Author(s):  
Xinjun Luan ◽  
Jingxun Yu

AbstractTransition-metal-catalyzed C–N bond formation is one of the most important pathways to synthesize N-heterocycles. Hydroxylamines can be transformed into a nucleophilic reagent to react with a carbon cation or coordinate with a transition metal; it can also become an electrophilic nitrogen source to react with arenes, alkenes, and alkynes. In this short review, the progress made on transition-metal-catalyzed cycloadditions with hydroxylamines as a nitrogen source is summarized.1 Introduction2 Cycloaddition To Form Aziridine Derivatives2.1 Intramolecular Cycloaddition To Form Aziridine Derivatives2.2 Intermolecular Cycloaddition To Form Aziridine Derivatives3 Cycloaddition To Form Indole Derivatives4 Cycloaddition To Form Other N-Heterocycles4.1 Aza-Heck-Type Amination Reactions4.2 Nitrene Insertion Amination Reactions4.3 Intramolecular Nucleophilic and Electrophilic Amination Reactions5 Conclusion and Outlook


2021 ◽  
Vol 444 ◽  
pp. 214065
Author(s):  
Priyanka Chakraborty ◽  
Rajib Mandal ◽  
Nidhi Garg ◽  
Basker Sundararaju

RSC Advances ◽  
2021 ◽  
Vol 11 (13) ◽  
pp. 7146-7179
Author(s):  
P. V. Saranya ◽  
Mohan Neetha ◽  
Thaipparambil Aneeja ◽  
Gopinathan Anilkumar

Spirooxindoles are used as anticancer-, antiviral-, antimicrobial agents etc. The use of transition metals as catalysts for the synthesis of spirooxindoles is advancing rapidly. Here, we focus on recent advances in transition metal-catalyzed synthesis of spirooxindoles.


Synthesis ◽  
2021 ◽  
Author(s):  
Jonas Felix Goebel ◽  
Zhongyi Zeng ◽  
Lukas Goossen

The use of electricity as an inexpensive and waste-free oxidant opens up new opportunities for the development of sustainable C–H functionalization reactions. Herein we summarize recent advances in the synthesis of biaryls through electrooxidative processes involving transition metal catalyzed ortho-directed C−H activation. A particular focus is set on electrooxidative C−H/C−M couplings and dehydrogenative couplings.


2017 ◽  
Vol 4 (7) ◽  
pp. 1435-1467 ◽  
Author(s):  
Wenbo Ma ◽  
Parthasarathy Gandeepan ◽  
Jie Li ◽  
Lutz Ackermann

Recent advances in transition-metal catalyzed positional-selective alkenylations via twofold C–H activation directed by removable or traceless directing groups are reviewed.


Sign in / Sign up

Export Citation Format

Share Document