nitrogen source
Recently Published Documents


TOTAL DOCUMENTS

2249
(FIVE YEARS 333)

H-INDEX

79
(FIVE YEARS 10)

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 122985
Author(s):  
Heresh Rayej ◽  
Mohammad Reza Vaezi ◽  
Behzad Aghabarari ◽  
Ramiro Ruiz-Rosas ◽  
Juana M Rosas ◽  
...  

2022 ◽  
Vol 429 ◽  
pp. 132326
Author(s):  
Yu-qiong Gao ◽  
Jia Zhang ◽  
Jin-qiang Zhou ◽  
Wen-hai Chu ◽  
Nai-yun Gao

Author(s):  
Peng‐Wei Sun ◽  
Ze Zhang ◽  
Xinyao Wang ◽  
Linshan Li ◽  
Yuxin Li ◽  
...  
Keyword(s):  

Synlett ◽  
2022 ◽  
Author(s):  
Jing Jiao ◽  
Pengyang Wang ◽  
Fangtao Xiao ◽  
Zhipeng Zhang

Quinolines especially 2-aminoquinolines are highly important heterocycles in medicinal chemistry. 2-Aminoquinolines can be synthesized via stepwise construction of quinoline ring followed by additional amination, however the protocol is cumbersome. Herein, we describe a [5+1] cyclization of 2-vinylanilines with tetraalkylthiuram disulfide in the presence of iodine and copper(II) triflate. This reaction directly employs readily available and low-cost thiuram as both C1 synthon and nitrogen source, providing a facile approach for one-step synthesis of a variety of 2-aminoquinolines in good to excellent yields.


2022 ◽  
Author(s):  
Jiaying Abby Guo ◽  
Robert Strzepek ◽  
Anusuya Willis ◽  
Aaron Ferderer ◽  
Lennart Thomas Bach

Abstract. Ocean alkalinity enhancement (OAE) is a proposed method for removing carbon dioxide (CO2) from the atmosphere by the accelerated weathering of (ultra-) basic minerals to increase alkalinity – the chemical capacity of seawater to store CO2. During the weathering of OAE-relevant minerals relatively large amounts of trace metals will be released and may perturb pelagic ecosystems. Nickel (Ni) is of particular concern as it is abundant in olivine, one of the most widely considered minerals for OAE. However, so far there is limited knowledge about the impact of Ni on marine biota including phytoplankton. To fill this knowledge gap, this study tested the growth and photo-physiological response of 11 marine phytoplankton species to a wide range of dissolved Ni concentrations (from 0 nmol/L to 50,000 nmol/L). We found that the phytoplankton species were not very sensitive to Ni concentrations under the culturing conditions established in our experiments, but the responses were species-specific. The growth rates of 6 of the 11 tested species showed small but significant responses to changing Ni concentrations. Photosynthetic performance, assessed by measuring the maximum quantum yield (Fv/Fm) and the functional absorption cross-section (σPSII) of photosystem II, was also only mildly sensitive to changing Ni in 3 out of 11 species and 4 out of 11 species, respectively. The limited effect of Ni may be partly due to the provision of nitrate as the nitrogen source for growth, as previous studies suggest higher sensitivities when urea is the nitrogen source. Furthermore, limited influence may be due to the relatively high concentrations of organic ligands in the growth media in our experiments. These ligands reduced bioavailable Ni (i.e., “free Ni2+”) concentrations by binding the majority of the dissolved Ni. Our data suggest that dissolved Ni does not have a strong effect on phytoplankton under our experimental conditions, but we emphasize that a deeper understanding of nitrogen sources, ligand concentrations and phytoplankton composition is needed when assessing the influence of Ni release associated with OAE. We discuss if applications of OAE with Ni-rich minerals may be safer in regions with high organic ligand concentrations and low concentrations of urea as such boundary conditions may lead to less impact of Ni on phytoplankton communities.


2022 ◽  
pp. 103-110
Author(s):  
M. Nunes da Silva ◽  
A.P.G. Fernandes ◽  
M.V. Vasconcelos ◽  
L.M.P. Valente ◽  
S.M.P. Carvalho

2021 ◽  
Vol 9 (2) ◽  
pp. 19-24
Author(s):  
. Rusnam ◽  
Neni Gusmanizar

In soil, polyacrylamide is a key source of acrylamide because it slowly decomposes into acrylamide. There has been a modest but steady rise in worldwide interest in microbe-mediated acrylamide decomposition as a bioremediation method. A bacterial consortium isolated from the volcanic soil of Mount Marapi, West Sumatra, Indonesia, was able to thrive on acrylamide in this study. Acrylamide-degrading bacteria grew best in the presence of 1 %(w/v) glucose with acrylamide as the sole nitrogen source. Optimum growth occurs in between 300 and 500 mg/L of acrylamide, pH between 6.5 and 8.0, and temperatures between 30 and 35 °C. The consortium can also grow on acetamide as the sole nitrogen source. Toxic heavy metals, such as mercury, silver and copper slowed down the growth of this consortium on acrylamide. This is the first report of an acrylamide-degrading consortium isolated from volcanic soils.


ChemSusChem ◽  
2021 ◽  
Author(s):  
Shalika Parakatawella ◽  
Diptajyoti Gogoi ◽  
Poonam Deka ◽  
Yizhi Xu ◽  
Chanaka Sandaruwan ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Dinary Durán-Sequeda ◽  
Daniela Suspes ◽  
Estibenson Maestre ◽  
Manuel Alfaro ◽  
Gumer Perez ◽  
...  

This research aimed to establish the relationship between carbon–nitrogen nutritional factors and copper sulfate on laccase activity (LA) by Pleurotus ostreatus. Culture media composition was tested to choose the nitrogen source. Yeast extract (YE) was selected as a better nitrogen source than ammonium sulfate. Then, the effect of glucose and YE concentrations on biomass production and LA as response variables was evaluated using central composite experimental designs with and without copper. The results showed that the best culture medium composition was glucose 45 gL−1 and YE 15 gL−1, simultaneously optimizing these two response variables. The fungal transcriptome was obtained in this medium with or without copper, and the differentially expressed genes were found. The main upregulated transcripts included three laccase genes (lacc2, lacc6, and lacc10) regulated by copper, whereas the principal downregulated transcripts included a copper transporter (ctr1) and a regulator of nitrogen metabolism (nmr1). These results suggest that Ctr1, which facilitates the entry of copper into the cell, is regulated by nutrient-sufficiency conditions. Once inside, copper induces transcription of laccase genes. This finding could explain why a 10–20-fold increase in LA occurs with copper compared to cultures without copper when using the optimal concentration of YE as nitrogen sources.


2021 ◽  
Vol 74 (2S) ◽  
pp. S20-S33
Author(s):  
Lizelle Vorster ◽  
Ruth C. Butler ◽  
Lauren Turner ◽  
Emma Patrick ◽  
Rebecca E. Campbell ◽  
...  

The effects of nitrogen on the interaction between apple trees and European canker caused by Neonectria ditissima are not well understood. Previous field and laboratory studies have shown that nitrogen affects N. ditissima disease development, germination and germ-tube growth in vitro but the type of nitrogen source has not been examined in vivo. Therefore, the aim of this study was to determine the effects of root-applied nitrogen from different sources on the development of European canker on inoculated potted trees. One-year-old ‘Royal Gala’ trees were planted in a low-nitrogen growth substrate and treated with a range of concentrations of calcium ammonium nitrate (CAN) or other nitrogen sources (Ca(NO3)2, KNO3, (NH4)2SO4, NH4NO3, urea, YaraMila™) at equivalent molar rates of nitrogen as the highest CAN treatment. Treatments were applied during the growing season (Nov to May). The control treatment received no applied nitrogen. Bud and leaf scar wounds were inoculated at leaf fall with N. ditissima conidia. Tree growth and health, disease progression and leaf nitrogen content were monitored. The rate of nitrogen application affected tree diameter and leaf nitrogen content while the nitrogen source mainly affected tree survival, powdery mildew incidence, leaf weights, leaf nitrogen and European canker symptom expression. Trees treated with (NH4)2SO4 had the lowest survival rates and highest leaf nitrogen content. Disease expression was highest with NH4NO3 and lowest with KNO3 applications. The control plants (which received no additional nitrogen), showed the least amount of both growth and disease expression. Applications of CAN, even at the lowest rate (20 g), increased disease susceptibility. Increasing rates of CAN applications did not significantly increase disease incidence. Nitrogen concentration is an important factor in the disease development of European canker of apple. Field evaluation is recommended to further validate these results.


Sign in / Sign up

Export Citation Format

Share Document