scholarly journals Pronator Quadratus to Extensor Carpi Radialis Brevis Nerve Transfer in C5–C7 or C5–C8 Brachial Plexus Injuries for Independent Wrist Extension

2020 ◽  
Vol 53 (01) ◽  
pp. 036-041
Author(s):  
Anil Bhatia ◽  
Mahmoud Salama

Abstract Background Patients with lesions affecting C7 and C8 roots (in addition to C56) demonstrate loss of independent wrist dorsiflexion in addition to loss of shoulder abduction and elbow flexion. Traditionally, this deficit has been addressed using tendon transfers after useful function at the shoulder and elbow has been restored by primary nerve surgery. Confidence with nerve transfer techniques has prompted attempts to replace this method by incorporating procedures for wrist dorsiflexion in the primary operation itself. Aim The objective of this study was to report the results of pronator quadratus motor branch transfers to the extensor carpi radialis brevis motor branch to reconstruct wrist extension in C5–C8 root lesions of the brachial plexus. Patients and Methods Twenty-three patients, average age 30 years, with C5–8 root injuries underwent operations an average of 4.7 months after their accident. Extrinsic extension of the fingers and thumb was weak or absent in two cases while the remaining 18 patients could open their hand actively. The patients lacked independent wrist extension when they were examined with the fingers flexed as the compensatory action of the extrinsic finger extensors was removed. The average follow-up was 21 months postoperative with the minimal follow-up period was at least 12 months. Results Successful reinnervations of the extensor carpi radialis brevis (ECRB) were demonstrated in all patients. In 17 patients, wrist extension scored M4, and in 3 patients it scored M3. Conclusions The pronator quadratus (PQ) to ECRB nerve transfer in C5–C7 or C5–C8 brachial plexus injuries for independent wrist extension reconstruction gives consistently good results with minimal donor morbidity.

2016 ◽  
Vol 124 (5) ◽  
pp. 1442-1449 ◽  
Author(s):  
Jayme Augusto Bertelli ◽  
Marcos Flávio Ghizoni ◽  
Cristiano Paulo Tacca

OBJECT The objective of this study was to report the results of pronator quadratus (PQ) motor branch transfers to the extensor carpi radialis brevis (ECRB) motor branch to reconstruct wrist extension in C5–8 root lesions of the brachial plexus. METHODS Twenty-eight patients, averaging 24 years of age, with C5–8 root injuries underwent operations an average of 7 months after their accident. In 19 patients, wrist extension was impossible at baseline, whereas in 9 patients wrist extension was managed by activating thumb and wrist extensors. When these 9 patients grasped an object, their wrist dropped and grasp strength was lost. Wrist extension was reconstructed by transferring the PQ motor to the ECRB motor branch. After surgery, patients were followed for at least 12 months, with final follow-up an average of 22 months after surgery. RESULTS Successful reinnervation of the ECRB was demonstrated in 27 of the 28 patients. In 25 of the patients, wrist extension scored M4, and in 2 it scored M3. CONCLUSIONS In C5–8 root injuries, wrist extension can be predictably reconstructed by transferring the PQ motor branch to reinnervate the ECRB.


Neurosurgery ◽  
2009 ◽  
Vol 65 (suppl_4) ◽  
pp. A55-A62 ◽  
Author(s):  
Olawale A.R. Sulaiman ◽  
Daniel D. Kim ◽  
Clint Burkett ◽  
David G. Kline

Abstract OBJECTIVE To review the clinical outcomes in our patients who have undergone nerve transfer operations for brachial plexus reconstruction at the Louisiana State University (LSU) over a 10-year period. A secondary objective is to compare clinical outcomes in patients who had only nerve transfer operations as compared with patients whose nerve transfers were supplemented with direct repair of brachial plexus elements. METHODS Retrospective review of the medical records, imaging, and electrodiagnostic studies (electromyographic and nerve conduction studies) of patients with brachial plexus injuries who underwent nerve transfer operations at LSU over a period of 10 years. RESULTS A total of 81 patients were treated between 1995 to 2005 at the LSU Health Sciences Center; 7 of these patients were lost to follow-up, leaving 74 patients, with an average follow-up of 3.5 years, for review. We evaluated recovery of elbow flexion and shoulder abduction. Ninety percent of patients with medial pectoral to musculocutaneous nerve transfers recovered to LSU grade 2 (Medical Research Council grade 3), and 60% of those patients with intercostal to musculocutaneous nerve transfer regained similar strength in elbow flexion. Shoulder abduction recovery to LSU grade 2 (Medical Research Council grade 3) after spinal accessory to suprascapular and/or thoracodorsal to axillary nerve transfer, was 95% and 36%, respectively. There was a tendency for better motor recovery when nerve transfer operations were combined with direct repair of plexus elements. CONCLUSION Nerve transfers for repair of brachial plexus injuries result in excellent recovery of elbow and shoulder functions. Patients who had direct repair of brachial plexus elements in addition to nerve transfers tended to do better than those who had only nerve transfer operations.


2020 ◽  
Vol 27 (07) ◽  
pp. 1442-1447
Author(s):  
Husnain Khan ◽  
Muhammad Shafique ◽  
Zahid Iqbal Bhatti ◽  
Tehseen Ahmad Cheema

Adult brachial plexus injury is a now a common problem due to high incidence of motorbike accidents. Among all types, C 5 and C6 (upper brachial plexus injury) is the most common. If the patient present within 6 months then nerve transfer is the preferred treatment. However, there are different options for nerve transfer and different approaches for surgery. Objectives: The objective of the study was to share our experience of nerve transfer close to target muscles in upper brachial plexus injury. Study Design: Quaisi experimental study. Setting: National Orthopaedic Hospital, Bahawalpur. Period: January 2015 to June 2018. Material & Methods: Total 32 patients were operated with isolated C5 and C6 injury. In all patients four nerve transfers were done. For shoulder abduction posterior approach was used and accessory to suprascapular nerve and one of motor branch of radial to axillary nerve were transferred. Modified Oberlin transfer was done for elbow flexion. Both shoulder abduction and elbow flexion was graded according to medical research council grading system. Results: After one year follow up more than 75% of the patients showed good to normal shoulder abduction and 87.50% showed good to normal elbow flexion. Residual Median nerve damage was noted only in two patients (6.25%). Conclusion: If there is no evidence of recovery up to three months early nerve transfer should be considered, ideal time is 3-6 months. Nerve transfer close to target muscle yields superior results. The shoulder stabilizers and abductors should ideally be innervated by double nerve transfer through posterior approach. Similarly double fascicular transfer (modified Oberlin) should be done for elbow flexion.


Neurosurgery ◽  
2011 ◽  
Vol 68 (2) ◽  
pp. E567-E570 ◽  
Author(s):  
Jayme Augusto Bertelli ◽  
Marcos Flávio Ghizoni

Abstract BACKGROUND AND IMPORTANCE: To report on the successful use of a platysma motor nerve transfer to the accessory nerve in a patient with concomitant trapezius and brachial plexus palsy. CLINICAL PRESENTATION: A 20-year-old man presented with total avulsion of the right brachial plexus combined with palsies of the accessory and phrenic nerve. The patient was operated on 4 months after his injury. The accessory nerve was repaired via direct transfer of the platysma motor branch. The contralateral C7 root was connected to the musculocutaneous nerve, and the hemihypoglossal nerve was grafted to the suprascapular nerve. Two intercostal nerves were attached to the triceps long head motor branch. CONCLUSION: Within 20 months of surgery, the patient regained full reinnervation of the upper trapezius muscle. Elbow flexion scored M3+, and 30° active shoulder abduction was observed. Triceps reinnervation was poor. Platysma motor branch transfer to the accessory nerve is a viable alternative to reinnervate the trapezius muscle.


2020 ◽  
Vol 132 (6) ◽  
pp. 1914-1924 ◽  
Author(s):  
Liang Li ◽  
Jiantao Yang ◽  
Bengang Qin ◽  
Honggang Wang ◽  
Yi Yang ◽  
...  

OBJECTIVEHuman acellular nerve allograft applications have increased in clinical practice, but no studies have quantified their influence on reconstruction outcomes for high-level, greater, and mixed nerves, especially the brachial plexus. The authors investigated the functional outcomes of human acellular nerve allograft reconstruction for nerve gaps in patients with brachial plexus injury (BPI) undergoing contralateral C7 (CC7) nerve root transfer to innervate the upper trunk, and they determined the independent predictors of recovery in shoulder abduction and elbow flexion.METHODSForty-five patients with partial or total BPI were eligible for this retrospective study after CC7 nerve root transfer to the upper trunk using human acellular nerve allografts. Deltoid and biceps muscle strength, degree of shoulder abduction and elbow flexion, Semmes-Weinstein monofilament test, and static two-point discrimination (S2PD) were examined according to the modified British Medical Research Council (mBMRC) scoring system, and disabilities of the arm, shoulder, and hand (DASH) were scored to establish the function of the affected upper limb. Meaningful recovery was defined as grades of M3–M5 or S3–S4 based on the scoring system. Subgroup analysis and univariate and multivariate logistic regression analyses were conducted to identify predictors of human acellular nerve allograft reconstruction.RESULTSThe mean follow-up duration and the mean human acellular nerve allograft length were 48.1 ± 10.1 months and 30.9 ± 5.9 mm, respectively. Deltoid and biceps muscle strength was grade M4 or M3 in 71.1% and 60.0% of patients. Patients in the following groups achieved a higher rate of meaningful recovery in deltoid and biceps strength, as well as lower DASH scores (p < 0.01): age < 20 years and age 20–29 years; allograft lengths ≤ 30 mm; and patients in whom the interval between injury and surgery was < 90 days. The meaningful sensory recovery rate was approximately 70% in the Semmes-Weinstein monofilament test and S2PD. According to univariate and multivariate logistic regression analyses, age, interval between injury and surgery, and allograft length significantly influenced functional outcomes.CONCLUSIONSHuman acellular nerve allografts offered safe reconstruction for 20- to 50-mm nerve gaps in procedures for CC7 nerve root transfer to repair the upper trunk after BPI. The group in which allograft lengths were ≤ 30 mm achieved better functional outcome than others, and the recommended length of allograft in this procedure was less than 30 mm. Age, interval between injury and surgery, and allograft length were independent predictors of functional outcomes after human acellular nerve allograft reconstruction.


Neurosurgery ◽  
2011 ◽  
Vol 70 (2) ◽  
pp. E516-E520 ◽  
Author(s):  
Leandro Pretto Flores

Abstract BACKGROUND AND IMPORTANCE: Restoration of elbow extension has not been considered of much importance regarding functional outcomes in brachial plexus surgery; however, the flexion of the elbow joint is only fully effective if the motion can be stabilized, what can be achieved solely if the triceps brachii is coactivated. To present a novel nerve transfer of a healthy motor fascicle from the ulnar nerve to the nerve of the long head of the triceps to restore the elbow extension function in brachial plexus injuries involving the upper and middle trunks. CLINICAL PRESENTATION: Case 1 is a 32-year-old man sustaining a right brachial extended upper plexus injury in a motorcycle accident 5 months before admission. The computed tomography myelogram demonstrated avulsion of the C5 and C6 roots. Case 2 is a 24-year-old man who sustained a C5-C7 injury to the left brachial plexus in a traffic accident 4 months before admission. Computed tomography myelogram demonstrated signs of C6 and C7 root avulsion. The technique included an incision at the medial border of the biceps, in the proximal third of the involved arm, followed by identification of the ulnar nerve, the radial nerve, and the branch to the long head of the triceps. The proximal stump of a motor fascicle from the ulnar nerve was sutured directly to the distal stump of the nerve of the long head of the triceps. Techniques to restore elbow flexion and shoulder abduction were applied in both cases. Triceps strength Medical Research Council M4 grade was obtained in both cases. CONCLUSION: The attempted nerve transfer was effective for restoration of elbow extension in primary brachial plexus surgery; however, it should be selected only for cases in which other reliable donor nerves were used to restore elbow flexion.


2019 ◽  
Vol 24 (03) ◽  
pp. 283-288
Author(s):  
Yusuke Nagano ◽  
Daisuke Kawamura ◽  
Alaa Terkawi ◽  
Atsushi Urita ◽  
Yuichiro Matsui ◽  
...  

Background: Partial ulnar nerve transfer to the biceps motor branch of the musculocutaneous nerve (Oberlin’s transfer) is a successful approach to restore elbow flexion in patients with upper brachial plexus injury (BPI). However, there is no report on more than 10 years subjective and objective outcomes. The purpose of this study was to clarify the long-term outcomes of Oberlin’s transfer based on the objective evaluation of elbow flexion strength and subjective functional evaluation of patients. Methods: Six patients with BPI who underwent Oberlin’s transfer were reviewed retrospectively by their medical records. The mean age at surgery was 29.5 years, and the mean follow-up duration was 13 years. The objective functional outcomes were evaluated by biceps muscle strength using the Medical Research Council (MRC) grade at preoperative, postoperative, and final follow-up. The patient-derived subjective functional outcomes were evaluated using the Quick Disability of the Arm, Shoulder, and Hand (QuickDASH) questionnaire at final follow-up. Results: All patients had MRC grade 0 (M0) or 1 (M1) elbow flexion strength before operation. Four patients gained M4 postoperatively and maintained or increased muscle strength at the final follow-up. One patient gained M3 postoperatively and at the final follow-up. Although one patient achieved M4 postoperatively, the strength was reduced to M2 due to additional disorder. The mean score of QuickDASH was 36.5 (range, 7–71). Patients were divided into two groups; three patients had lower scores and the other three patients had higher scores of QuickDASH. Conclusions: Oberlin’s transfer is effective in the restoration of elbow flexion and can maintain the strength for more than 10 years. Patients with upper BPI with restored elbow flexion strength and no complicated nerve disorders have over ten-year subjective satisfaction.


2020 ◽  
Vol 19 (3) ◽  
pp. 249-254
Author(s):  
Mariano Socolovsky ◽  
Marcio de Mendonça Cardoso ◽  
Ana Lovaglio ◽  
Gilda di Masi ◽  
Gonzalo Bonilla ◽  
...  

Abstract BACKGROUND The phrenic nerve has been extensively reported to be a very powerful source of transferable axons in brachial plexus injuries. The most used technique used is supraclavicular sectioning of this nerve. More recently, video-assisted thoracoscopic techniques have been reported as a good alternative, since harvesting a longer phrenic nerve avoids the need of an interposed graft. OBJECTIVE To compare grafting vs phrenic nerve transfer via thoracoscopy with respect to mean elbow strength at final follow-up. METHODS A retrospective analysis was conducted among patients who underwent phrenic nerve transfer for elbow flexion at 2 centers from 2008 to 2017. All data analysis was performed in order to determine statistical significance among the analyzed variables. RESULTS A total of 32 patients underwent supraclavicular phrenic nerve transfer, while 28 underwent phrenic nerve transfer via video-assisted thoracoscopy. Demographic characteristics were similar in both groups. A statistically significant difference in elbow flexion strength recovery was observed, favoring the supraclavicular phrenic nerve section group against the intrathoracic group (P = .036). A moderate though nonsignificant difference was observed favoring the same group in mean elbow flexion strength. Also, statistical differences included patient age (P = .01) and earlier time from trauma to surgery (P = .069). CONCLUSION Comparing supraclavicular sectioning of the nerve vs video-assisted, intrathoracic nerve sectioning to restore elbow flexion showed that the former yielded statistically better results than the latter, in terms of the percentage of patients who achieve at least level 3 MRC strength at final follow-up. Furthermore, larger scale prospective studies assessing the long-term effects of phrenic nerve transfers remain necessary.


2015 ◽  
Vol 122 (1) ◽  
pp. 195-201 ◽  
Author(s):  
Zarina S. Ali ◽  
Gregory G. Heuer ◽  
Ryan W. F. Faught ◽  
Shriya H. Kaneriya ◽  
Umar A. Sheikh ◽  
...  

OBJECT Adult upper trunk brachial plexus injuries result in significant disability. Several surgical treatment strategies exist, including nerve grafting, nerve transfers, and a combination of both approaches. However, no existing data clearly indicate the most successful strategy for restoring elbow flexion and shoulder abduction in these patients. The authors reviewed the literature to compare outcomes of the three surgical repair techniques listed above to determine the optimal approach to traumatic injury to the upper brachial plexus in adults. METHODS Both PubMed and EMBASE databases were searched for English-language articles containing the MeSH topic “brachial plexus” in conjunction with the word “injury” or “trauma” in the title and “surgery” or “repair” as a MeSH subheading or in the title, excluding pediatric articles and those articles limited to avulsions. The search was also limited to articles published after 1990 and containing at least 10 operated cases involving upper brachial plexus injuries. The search was supplemented with articles obtained through the “Related Articles” feature on PubMed and the bibliographies of selected publications. From the articles was collected information on the operation performed, number of operated cases, mean subject ages, sex distribution, interval between injury and surgery, source of nerve transfers, mean duration of follow-up, year of publication, and percentage of operative success in terms of elbow flexion and shoulder abduction of the injured limb. The recovery of elbow flexion and shoulder abduction was separately analyzed. A subanalysis was also performed to assess the recovery of elbow flexion following various neurotization techniques. RESULTS As regards the restoration of elbow flexion, nerve grafting led to significantly better outcomes than either nerve transfer or the combined techniques (F = 4.71, p = 0.0097). However, separating the Oberlin procedure from other neurotization techniques revealed that the former was significantly more successful (F = 82.82, p < 0.001). Moreover, in comparing the Oberlin procedure to nerve grafting or combined procedures, again the former was significantly more successful than either of the latter two approaches (F = 53.14; p < 0.001). In the restoration of shoulder abduction, nerve transfer was significantly more successful than the combined procedure (p = 0.046), which in turn was significantly better than nerve grafting procedures (F = 5.53, p = 0.0044). CONCLUSIONS According to data in this study, in upper trunk brachial plexus injuries in adults, the Oberlin procedure and nerve transfers are the more successful approaches to restore elbow flexion and shoulder abduction, respectively, compared with nerve grafting or combined techniques. A prospective, randomized controlled trial would be necessary to fully elucidate differences in outcome among the various surgical approaches.


2011 ◽  
Vol 114 (6) ◽  
pp. 1520-1528 ◽  
Author(s):  
Wilson Z. Ray ◽  
Mitchell A. Pet ◽  
Andrew Yee ◽  
Susan E. Mackinnon

Object The clinical outcomes of patients with brachial plexus injuries who underwent double fascicular transfer (DFT) using fascicles from the median and ulnar nerves to reinnervate the biceps and brachialis muscles were evaluated. Methods The authors conducted a retrospective chart review of 29 patients with brachial plexus injuries that were treated with DFT for restoration of elbow flexion. All patients underwent pre- and postoperative clinical evaluation using the Medical Research Council grading system. Results The mean patient age was 37 years (range 17–68 years), and there was a mean follow-up of 19 ± 12 months (range 8–68 months). At the most recent follow-up, all but 1 patient (97%) had regained elbow flexion. Eight patients recovered Grade M5, 15 patients recovered Grade M4, and 4 patients recovered Grade M3 elbow flexion strength. There was no evidence of functional deficit in the donor nerve distributions. Conclusions Study results demonstrated the reliable restoration of M4–M5 elbow flexion following double fascicular transfer in patients with brachial plexus injuries.


Sign in / Sign up

Export Citation Format

Share Document