An Aryl Iodide Catalyzed Bora-Wagner–Meerwein Rearrangement

Synfacts ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. 1383
Keyword(s):  
2020 ◽  
Vol 7 (19) ◽  
pp. 2938-2943
Author(s):  
Yeojin Kim ◽  
Kwang Ho Song ◽  
Sunwoo Lee

Aryl sulfonyl hydrazide reacted with aryl iodide in the presence of CO to give the corresponding S-aryl thioesters.


2005 ◽  
Vol 7 (26) ◽  
pp. 5801-5804 ◽  
Author(s):  
Jiayin Li ◽  
Philip Wai Hong Chan ◽  
Chi-Ming Che
Keyword(s):  

2017 ◽  
Vol 83 (1) ◽  
pp. 289-295 ◽  
Author(s):  
Yui Masumoto ◽  
Kazunori Miyamoto ◽  
Takuto Iuchi ◽  
Masahito Ochiai ◽  
Keiichi Hirano ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xuemin Li ◽  
Guangchen Li ◽  
Yifu Cheng ◽  
Yunfei Du

Abstract The application of hypervalent iodine species generated in situ in organic transformations has emerged as a useful and powerful tool in organic synthesis, allowing for the construction of a series of bond formats via oxidative coupling. Among these transformations, the catalytic aryl iodide can be oxidized to hypervalent iodine species, which then undergoes oxidative reaction with the substrates and the aryl iodine regenerated again once the first cyclic cycle of the reaction is completed. This review aims to systematically summarize and discuss the main progress in the application of in situ-generated hypervalent iodine species, providing references and highlights for synthetic chemists who might be interested in this field of hypervalent iodine chemistry.


Author(s):  
Douglass F. Taber

Jianbo Wang of Peking University described (Angew. Chem. Int. Ed. 2010, 49, 2028) the Au-promoted bromination of a benzene derivative such as 1 with N-bromosuccinimide. In a one-pot procedure, addition of a Cu catalyst followed by microwave heating delivered the aminated product 2. Jian-Ping Zou of Suzhou University and Wei Zhang of the University of Massachusetts, Boston, observed (Tetrahedron Lett. 2010, 51, 2639) that the phosphonylation of an arene 3 proceeded with substantial ortho selectivity. Yonghong Gu of the University of Science and Technology, Hefei, showed (Tetrahedron Lett. 2010, 51, 192) that an arylpropanoic acid 6 could be ortho hydroxylated with PIFA to give 7. Louis Fensterbank, Max Malacria, and Emmanuel Lacôte of UMPC Paris found (Angew. Chem. Int. Ed. 2010, 49, 2178) that a benzoic acid could be ortho aminated by way of the cyano amide 8. Daniel J. Weix of the University of Rochester developed (J. Am. Chem. Soc. 2010, 132, 920) a protocol for coupling an aryl iodide 10 with an alkyl iodide 11 to give 12. Professor Wang devised (Angew. Chem. Int. Ed. 2010, 49, 1139) a mechanistically intriguing alkyl carbonylation of an iodobenzene 10. This is presumably proceeding by way of the intermediate diazo alkane. Usually, benzonitriles are prepared by cyanation of the halo aromatic. Hideo Togo of Chiba University established (Synlett 2010, 1067) a protocol for the direct electrophilic cyanation of an electron-rich aromatic 15. Thomas E. Cole of San Diego State University observed (Tetrahedron Lett. 2010, 51, 3033) that an alkyl dimethyl borane, readily prepared by hydroboration of the alkene with BCl3 and Et3 SiH, reacted with benzoquinone 17 to give 18. Presumably this transformation could also be applied to substituted benzoquinones. When a highly substituted benzene derivative is needed, it is sometimes more economical to construct the aromatic ring. Joseph P. A. Harrity of the University of Sheffield and Gerhard Hilt of Philipps-Universität Marburg showed (J. Org. Chem. 2010, 75, 3893) that the Co-catalyzed Diels-Alder cyloaddition of alkynyl borinate 21 with a diene 20 proceeded with high regiocontrol, to give, after oxidation, the aryl borinate 22.


Author(s):  
Douglass F. Taber

Jaesook Yun of Sungkyunkwan University devised (J. Org. Chem. 2009, 74, 4232) a method, based on conjugate addition to a cyano alkyne, for the preparation of nitriles such as 1 with high geometric control. Enantioselective conjugate reduction then delivered the doubly arylated stereogenic center of 2 in high ee. Pher G. Andersson of Uppsala University described (J. Am. Chem. Soc. 2009, 131, 8855) a similar approach to diarylated ternary stereogenic centers. Motomu Kanai and Masakatsu Shibasaki of the University of Tokyo developed (J. Am. Chem. Soc. 2009, 131, 3858) a complementary approach to dialkylated stereogenic centers based on enantioselective conjugate cyanation of α-methylene N-acylpyrroles such as 3. Cathleen M. Crudden of Queen’s University established (J. Am. Chem. Soc. 2009, 131, 5024) that a benzylic organoborane, prepared by enantioselective hydroboration of styrene, coupled with an aryl iodide such as 6 in good yield and with > 90% retention of ee. Kwunmin Chen of National Taiwan Normal University devised ( Adv. Synth. Cat. 2009, 351, 1273) an organocatalyst for the enantioselective Michael addition of an α,α,-dialkyl aldehyde such as 9 to a nitroalkene. Wenhu Duan of the East China University of Science and Technology and Wei Wang of the University of New Mexico together developed (Organic Lett. 2009, 11, 2864) an organocatalyst for the enantioselective addition of nitromethane 12 to an unsaturated ketone such as 11. Xiaodong Shi of West Virginia University found (Angew. Chem. Int. Ed. 2009, 48, 1279) that commercial diphenyl prolinol effectively promoted enantioselective conjugate addition of 15 to 14. Enantioselective methods for the construction of alkylated quaternary centers have also been put forward. Kin-ichi Tadano of Keio University devised (Tetrahedron Lett. 2009, 50, 1139) a glucose-derived chiral auxiliary that effectively directed the absolute sense of the alkylation of 17. Li Deng of Brandeis University reported (Tetrahedron 2009, 65, 3139) further details of his elegant Cinchona -mediated conjugate addition of 19 to 20. Francesca Marini of the Università degli Studi di Perugia extended (Adv. Synth. Cat. 2009, 351, 103) this approach to selenones, effecting, over two steps, enantioselective vinylation.


2019 ◽  
Vol 6 (19) ◽  
pp. 3415-3419 ◽  
Author(s):  
Xiaoyan Chen ◽  
Hao Zhou ◽  
Zhiyuan Chen

The Pd-catalyzed multicomponent reactions of NH-sulfoximine, aryl iodide and norbornadiene (NBD) are reported to chemoselectively produce fused medium-sized sulfoximine polyheterocycles in good to excellent yields.


ChemInform ◽  
1989 ◽  
Vol 20 (40) ◽  
Author(s):  
C. H. WINTER ◽  
W. R. VEAL ◽  
C. M. GARNER ◽  
A. M. ARIF ◽  
J. A. GLADYSZ
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document