iodine species
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 53)

H-INDEX

27
(FIVE YEARS 5)

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3421
Author(s):  
Sung-Jun Koo ◽  
Jae Ho Kim ◽  
Yong-Ki Kim ◽  
Myunghun Shin ◽  
Jin Woo Choi ◽  
...  

Fiber-shaped solar cells (FSCs) with flexibility, wearability, and wearability have emerged as a topic of intensive interest and development in recent years. Although the development of this material is still in its early stages, bacteriophage-metallic nanostructures, which exhibit prominent localized surface plasmon resonance (LSPR) properties, are one such material that has been utilized to further improve the power conversion efficiency (PCE) of solar cells. This study confirmed that fiber-shaped dye-sensitized solar cells (FDSSCs) enhanced by silver nanoparticles-embedded M13 bacteriophage (Ag@M13) can be developed as solar cell devices with better PCE than the solar cells without them. The PCE of FDSSCs was improved by adding the Ag@M13 into an iodine species (I−/I3−) based electrolyte, which is used for redox couple reactions. The optimized Ag@M13 enhanced FDSSC showed a PCE of up to 5.80%, which was improved by 16.7% compared to that of the reference device with 4.97%.


Author(s):  
Estefanía Baigorria ◽  
Javier. E. Durantini ◽  
Sol R. Martínez ◽  
María E. Milanesio ◽  
Yohana B. Palacios ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7056
Author(s):  
Chuan-Pin Lee ◽  
Yanqin Hu ◽  
Dongyang Chen ◽  
Enhui Wu ◽  
Ziteng Wang ◽  
...  

An accurate and effective method combining ion chromatography (IC) and inductively coupled plasma optical emission spectrometry (ICP-OES) was applied in this work to qualitatively and quantitatively analyze individual and co-existing iodide (I−) and iodate (IO3−) at various concentrations. More specifically, a very strong linear relationship for the peak area for the co-existing I− and IO3− ions was reached, and a high resolution value between two peaks was observed, which proves the effectiveness of our combined IC-ICP-OES method at analyzing iodine species. We observed lower accessible porosity for the diffusion of both I− and IO3− in samples of bentonite clay using IC-ICP-OES detection methods, where the effective diffusion coefficient varied based on the anion exclusion effect and the size of the diffusing molecules. In fact, the distribution coefficients (Kd) of both I− and IO3− were close to 0, which indicates that there was no adsorption on bentonite clay. This finding can be explained by the fact that no change in speciation took place during the diffusion of I− and IO3− ions in bentonite clay. Our IC-ICP-OES method can be used to estimate the diffusion coefficients of various iodine species in natural environments.


2021 ◽  
Vol 14 (10) ◽  
pp. 6623-6645
Author(s):  
Arseniy Karagodin-Doyennel ◽  
Eugene Rozanov ◽  
Timofei Sukhodolov ◽  
Tatiana Egorova ◽  
Alfonso Saiz-Lopez ◽  
...  

Abstract. In this paper, we present a new version of the chemistry–climate model SOCOL-AERv2 supplemented by an iodine chemistry module. We perform three 20-year ensemble experiments to assess the validity of the modeled iodine and to quantify the effects of iodine on ozone. The iodine distributions obtained with SOCOL-AERv2-I agree well with AMAX-DOAS observations and with CAM-chem model simulations. For the present-day atmosphere, the model suggests that the iodine-induced chemistry leads to a 3 %–4 % reduction in the ozone column, which is greatest at high latitudes. The model indicates the strongest influence of iodine in the lower stratosphere with 30 ppbv less ozone at low latitudes and up to 100 ppbv less at high latitudes. In the troposphere, the account of the iodine chemistry reduces the tropospheric ozone concentration by 5 %–10 % depending on geographical location. In the lower troposphere, 75 % of the modeled ozone reduction originates from inorganic sources of iodine, 25 % from organic sources of iodine. At 50 hPa, the results show that the impacts of iodine from both sources are comparable. Finally, we determine the sensitivity of ozone to iodine by applying a 2-fold increase in iodine emissions, as it might be representative for iodine by the end of this century. This reduces the ozone column globally by an additional 1.5 %–2.5 %. Our results demonstrate the sensitivity of atmospheric ozone to iodine chemistry for present and future conditions, but uncertainties remain high due to the paucity of observational data of iodine species.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xuemin Li ◽  
Guangchen Li ◽  
Yifu Cheng ◽  
Yunfei Du

Abstract The application of hypervalent iodine species generated in situ in organic transformations has emerged as a useful and powerful tool in organic synthesis, allowing for the construction of a series of bond formats via oxidative coupling. Among these transformations, the catalytic aryl iodide can be oxidized to hypervalent iodine species, which then undergoes oxidative reaction with the substrates and the aryl iodine regenerated again once the first cyclic cycle of the reaction is completed. This review aims to systematically summarize and discuss the main progress in the application of in situ-generated hypervalent iodine species, providing references and highlights for synthetic chemists who might be interested in this field of hypervalent iodine chemistry.


2021 ◽  
Author(s):  
Ahmed Moustafa ◽  
Alex Evans ◽  
Simmon Hofstetter ◽  
Jenny Boutros ◽  
Parastoo Pourrezaei ◽  
...  

2021 ◽  
Author(s):  
Ahmed Moustafa ◽  
Alex Evans ◽  
Simmon Hofstetter ◽  
Jenny Boutros ◽  
Parastoo Pourrezaei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document