iodine chemistry
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 30)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
pp. 335-386
Author(s):  
Brandon Frey † ◽  
Asim Maity † ◽  
Hao Tan ◽  
Pritam Roychowdhury ◽  
David C. Powers

2021 ◽  
Vol 14 (10) ◽  
pp. 6623-6645
Author(s):  
Arseniy Karagodin-Doyennel ◽  
Eugene Rozanov ◽  
Timofei Sukhodolov ◽  
Tatiana Egorova ◽  
Alfonso Saiz-Lopez ◽  
...  

Abstract. In this paper, we present a new version of the chemistry–climate model SOCOL-AERv2 supplemented by an iodine chemistry module. We perform three 20-year ensemble experiments to assess the validity of the modeled iodine and to quantify the effects of iodine on ozone. The iodine distributions obtained with SOCOL-AERv2-I agree well with AMAX-DOAS observations and with CAM-chem model simulations. For the present-day atmosphere, the model suggests that the iodine-induced chemistry leads to a 3 %–4 % reduction in the ozone column, which is greatest at high latitudes. The model indicates the strongest influence of iodine in the lower stratosphere with 30 ppbv less ozone at low latitudes and up to 100 ppbv less at high latitudes. In the troposphere, the account of the iodine chemistry reduces the tropospheric ozone concentration by 5 %–10 % depending on geographical location. In the lower troposphere, 75 % of the modeled ozone reduction originates from inorganic sources of iodine, 25 % from organic sources of iodine. At 50 hPa, the results show that the impacts of iodine from both sources are comparable. Finally, we determine the sensitivity of ozone to iodine by applying a 2-fold increase in iodine emissions, as it might be representative for iodine by the end of this century. This reduces the ozone column globally by an additional 1.5 %–2.5 %. Our results demonstrate the sensitivity of atmospheric ozone to iodine chemistry for present and future conditions, but uncertainties remain high due to the paucity of observational data of iodine species.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xuemin Li ◽  
Guangchen Li ◽  
Yifu Cheng ◽  
Yunfei Du

Abstract The application of hypervalent iodine species generated in situ in organic transformations has emerged as a useful and powerful tool in organic synthesis, allowing for the construction of a series of bond formats via oxidative coupling. Among these transformations, the catalytic aryl iodide can be oxidized to hypervalent iodine species, which then undergoes oxidative reaction with the substrates and the aryl iodine regenerated again once the first cyclic cycle of the reaction is completed. This review aims to systematically summarize and discuss the main progress in the application of in situ-generated hypervalent iodine species, providing references and highlights for synthetic chemists who might be interested in this field of hypervalent iodine chemistry.


SynOpen ◽  
2021 ◽  
Author(s):  
Addison M Duda ◽  
Michael T Giurini ◽  
Jason G Gillmore ◽  
Thomas F Guarr

Synthetic preparation of carbazoles can be challenging, requiring ring building strategies and/or precious metal catalysts. Presented herein is a method for preparation of carbazoles with the use of inexpensive and reliable hypervalent iodine chemistry. An oxidative single electron transfer (SET) event initiates cyclization for preparation of our trifluoromethyl carbazoles. This method has been shown to be useful for a variety of bis(trifluoromethyl)carbazole isomers that are of primary interest for use as battery materials.


2021 ◽  
Vol 21 (15) ◽  
pp. 11829-11842
Author(s):  
Anoop S. Mahajan ◽  
Mriganka S. Biswas ◽  
Steffen Beirle ◽  
Thomas Wagner ◽  
Anja Schönhardt ◽  
...  

Abstract. Iodine plays a vital role in oxidation chemistry over Antarctica, with past observations showing highly elevated levels of iodine oxide (IO) leading to severe depletion of boundary layer ozone in West Antarctica. Here, we present MAX-DOAS-based (multi-axis differential absorption spectroscopy) observations of IO over three summers (2015–2017) at the Indian Antarctic bases of Bharati and Maitri. IO was observed during all the campaigns with mixing ratios below 2 pptv (parts per trillion by volume) for the three summers, which are lower than the peak levels observed in West Antarctica. This suggests that sources in West Antarctica are different or stronger than sources of iodine compounds in East Antarctica, the nature of which is still uncertain. Vertical profiles estimated using a profile retrieval algorithm showed decreasing gradients with a peak in the lower boundary layer. The ground-based instrument retrieved vertical column densities (VCDs) were approximately a factor of 3 to 5 higher than the VCDs reported using satellite-based instruments, which is most likely related to the sensitivities of the measurement techniques. Air mass back-trajectory analysis failed to highlight a source region, with most of the air masses coming from coastal or continental regions. This study highlights the variation in iodine chemistry in different regions in Antarctica and the importance of a long-term dataset to validate models estimating the impacts of iodine chemistry.


Matter ◽  
2021 ◽  
Vol 4 (8) ◽  
pp. 2637-2639
Author(s):  
Fan Zhang ◽  
Qiang Wang ◽  
Yongbing Tang

2021 ◽  
Author(s):  
Arseniy Karagodin-Doyennel ◽  
Eugene Rozanov ◽  
Timofei Sukhodolov ◽  
Tatiana Egorova ◽  
Alfonso Saiz-Lopez ◽  
...  

Abstract. This paper introduces a new version of the chemistry-climate model SOCOL-AERv2, supplemented by an iodine chemistry module. We conducted three twenty-year-long ensemble experiments to assess the validity of modeled iodine and to quantify the effects of iodine on ozone. The obtained iodine distributions with SOCOL-AERv2-iodine show good agreement with the CAM-chem model simulations and AMAX-DOAS observations. For the present-day atmosphere, the model suggests the strongest influence of iodine in the lower stratosphere with an ozone loss of up to 30 ppbv at low latitudes and up to 100 ppbv at high latitudes. Globally averaged, the model suggests iodine-induced chemistry to result in an ozone column reduction of 3–4 %, maximizing at high latitudes. In the troposphere, iodine chemistry lowers tropospheric ozone concentrations by 5–10 % depending on the geographical location. We also determined the sensitivity of ozone to iodine applying a 2-fold increase of iodine emissions, which reduces the ozone column globally by an additional 1.5–2.5 %. We found that in the lower troposphere, the share of ozone loss induced by iodine originating from inorganic sources is 75 % and 25 % by iodine originating from organic sources, and contributions become similar at about 50 hPa. These results constrain the importance of atmospheric iodine chemistry for present and future conditions, even though uncertainties remain high due to the paucity of observational data of iodine species.


2021 ◽  
Vol 21 (11) ◽  
pp. 8437-8454
Author(s):  
Anoop S. Mahajan ◽  
Qinyi Li ◽  
Swaleha Inamdar ◽  
Kirpa Ram ◽  
Alba Badia ◽  
...  

Abstract. Recent observations have shown the ubiquitous presence of iodine oxide (IO) in the Indian Ocean marine boundary layer (MBL). In this study, we use the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem version 3.7.1), including halogen (Br, Cl, and I) sources and chemistry, to quantify the impacts of the observed levels of iodine on the chemical composition of the MBL. The model results show that emissions of inorganic iodine species resulting from the deposition of ozone (O3) on the sea surface are needed to reproduce the observed levels of IO, although the current parameterizations overestimate the atmospheric concentrations. After reducing the inorganic emissions by 40 %, a reasonable match with cruise-based observations is found, with the model predicting values between 0.1 and 1.2 pptv across the model domain MBL. A strong seasonal variation is also observed, with lower iodine concentrations predicted during the monsoon period, when clean oceanic air advects towards the Indian subcontinent, and higher iodine concentrations predicted during the winter period, when polluted air from the Indian subcontinent increases the ozone concentrations in the remote MBL. The results show that significant changes are caused by the inclusion of iodine chemistry, with iodine-catalysed reactions leading to regional changes of up to 25 % in O3, 50 % in nitrogen oxides (NO and NO2), 15 % in hydroxyl radicals (OH), 25 % in hydroperoxyl radicals (HO2), and up to a 50 % change in the nitrate radical (NO3), with lower mean values across the domain. Most of the large relative changes are observed in the open-ocean MBL, although iodine chemistry also affects the chemical composition in the coastal environment and over the Indian subcontinent. These results show the importance of including iodine chemistry in modelling the atmosphere in this region.


Synlett ◽  
2021 ◽  
Author(s):  
Xiao-Guang Yang ◽  
Ze-Nan Hu ◽  
Meng-Cheng Jia ◽  
Feng-Huan Du ◽  
Chi Zhang

Nowadays, hypervalent iodine chemistry has remarkably advanced in parallel with the emergence of novel hypervalent iodine reagents. Hypervalent iodine reagents, due to their outstanding characteristics including rich reactivities, excellent chemo-selectivity, stability, and environmental friendliness, are becoming more and more popular in the synthetic organic chemistry. In this minireview, a number of recent elegant research works and our perspective on the future of hypervalent iodine chemistry have been presented.


Sign in / Sign up

Export Citation Format

Share Document