The Effects of Growth Hormone and Insulin-Like Growth Factors I and II on Glutamine Metabolism by Skeletal Muscle of the RatIn Vitro

1993 ◽  
Vol 25 (05) ◽  
pp. 243-245 ◽  
Author(s):  
M. Parry-Billings ◽  
S. Bevan ◽  
E. Opara ◽  
C.-T. Liu ◽  
D. Dunger ◽  
...  
1996 ◽  
Vol 21 (4) ◽  
pp. 236-250 ◽  
Author(s):  
Jamie MacGregor ◽  
Wade S. Parkhouse

The role of the insulin-like growth factors I and II (IGF-I and IGF-II), previously known as the somatomedins, in general growth and development of various tissues has been known for many years. Thought of exclusively as endocrine factors produced by the liver, and under the control of growth hormone, the somatomedins were known as the intermediaries by which growth hormone exerted its cellular effects during tissue growth and maturation. Eventually it was discovered that virtually every tissue type is capable of autocrine production of the IGFs, and their involvement in skeletal muscle tissue repair and regeneration became apparent. Recent advances in technology have allowed the characterisation of many of the different growth factors believed to play a role in muscle regeneration, and experimental manipulations of cells in culture have provided insight into the effects of the various growth factors on the myoblast. This paper explores the potential role of the IGFs in skeletal muscle regeneration. A critical role of IGF-II in terminal differentiation of proliferating muscle precurser cells following injury is proposed. Key words: growth factors, myogenesis, skeletal muscle regeneration


2000 ◽  
Vol 166 (3) ◽  
pp. 565-577 ◽  
Author(s):  
LR Green ◽  
Y Kawagoe ◽  
DJ Hill ◽  
BS Richardson ◽  
VK Han

Intermittent umbilical cord compression with resultant fetal hypoxia can have a negative impact on fetal growth and development. Insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) are the most important regulators of fetal growth. In preterm (107-108 days of gestation) and near-term (128-131 days of gestation) ovine fetuses, we have determined the effect of intermittent umbilical cord occlusion (UCO) over a period of 4 days on the profile and expression of IGFs and IGFBPs. In experimental group animals (preterm n=7; near term n=7) UCOs were carried out by complete inflation of an occluder cuff (duration 90 s) every 30 min for 3-5 h each day, while control fetuses (preterm n=7; near term n=7) received no UCOs. Ewes were euthanized at the end of day 4, and fetal heart, lung, kidney, liver, skeletal muscle and placenta were collected. During UCOs, PO(2! ) fell (by approximately 13 mmHg), pH fell (by approximately 0.05) and PCO(2) increased (by approximately 7 mmHg), and changed to a similar extent in both preterm and near-term groups. In both preterm and near-term groups, there was no difference in fetal body or organ weight between UCO and control fetuses. No significant changes were observed in plasma IGF-I and -II concentrations or IGFBP-1, -2, -3 or -4 levels throughout the 4-day study at either gestational age. In the preterm group UCO fetuses, IGF-II mRNA (1.2-6.0 kb) levels were lower in fetal lung (33%, P<0.05), heart (54%, P<0.01) and skeletal muscle (29%, P<0.05), but there were no differences in IGF-I mRNA levels (7.3 kb); IGFBP-2 mRNA (1.5 kb) levels were lower in the right lobe of the liver (42%, P<0.05) and kidney (22%, P<0.01), but hig! her in the heart (72%, P<0.01), while IGFBP-4 (2.4 kb) levels were lower in skeletal muscle (21%, P<0.01). In the near-term group UCO fetuses, IGFBP-2 mRNA levels were greater in the placenta (39%, P<0.05). Thus, intermittent UCO as studied has a greater effect on the expression of genes encoding certain peptides of the fetal IGF system in selected tissues in preterm fetuses than that in near-term fetuses. Altered IGFBP-2 mRNA levels with reduced IGF-II mRNA levels in selected tissues may mediate changes in growth and/or differentiation that might become apparent if the length of the UCO study were extended.


1986 ◽  
Vol 113 (1_Suppl) ◽  
pp. S124
Author(s):  
U. VETTER ◽  
J. ZAPF ◽  
W. HEIT ◽  
E. HEINZE ◽  
R.E. FROESCH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document