sensory organ
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 40)

H-INDEX

54
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Ritika Giri ◽  
Shannon C Brady ◽  
Richard William Carthew

Cell fate decisions can be envisioned as bifurcating dynamical systems, and the decision that Drosophila cells make to undergo sensory organ differentiation has been sucessfully described as such. We have extended these studies by focusing on the Senseless protein, which orchestrates the sensory fate transition. Wing cells contain intermediate Senseless numbers prior to their fate transition, after which they express much greater numbers of Senseless molecules as they differentiate. However, the dynamics are not consistent with it being a simple bistable system. Cells with intermediate Senseless are best modeled as residing in four discrete states, each with a distinct protein number and occupying a specific region of the tissue. Although the four states are stable over time, the number of molecules in each state vary with time. Remarkably, the fold-change in molecule number between adjacent states is invariant and robust to absolute protein number variation. Thus, cells transitioning to sensory fates exhibit metastability with relativistic properties.


Author(s):  
Christopher B. Freelance ◽  
Michael J.L. Magrath ◽  
Mark A. Elgar ◽  
Bob B.M. Wong

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Elise Houssin ◽  
Mathieu Pinot ◽  
Karen Bellec ◽  
Roland Le Borgne

In multiple cell lineages, Delta-Notch signalling regulates cell fate decisions owing to unidirectional signalling between daughter cells. In Drosophila pupal sensory organ lineage, Notch regulates the intra-lineage pIIa/pIIb fate decision at cytokinesis. Notch and Delta that localise apically and basally at the pIIa-pIIb interface are expressed at low levels and their residence time at the plasma membrane is in the order of minutes. How Delta can effectively interact with Notch to trigger signalling from a large plasma membrane area remains poorly understood. Here, we report that the signalling interface possesses a unique apicobasal polarity with Par3/Bazooka localising in the form of nano-clusters at the apical and basal level. Notch is preferentially targeted to the pIIa-pIIb interface, where it co-clusters with Bazooka and its cofactor Sanpodo. Clusters whose assembly relies on Bazooka and Sanpodo activities are also positive for Neuralized, the E3 ligase required for Delta-activity. We propose that the nano-clusters act as snap buttons at the new pIIa-pIIb interface to allow efficient intra-lineage signalling.


Author(s):  
Brian T. Nedved ◽  
Marnie L. Freckelton ◽  
Michael G. Hadfield

Larvae of many marine invertebrates bear an anteriorly positioned apical sensory organ (ASO) presumed to be the receptor for settlement- and metamorphosis-inducing environmental cues, based on its structure, position and observed larval behavior. Larvae of the polychaete Hydroides elegans are induced to settle by bacterial biofilms, which they explore with their ASO and surrounding anteroventral surfaces. A micro-laser was utilized to destroy the ASO and other anterior ciliary structures in competent larvae of H. elegans. After ablation, larvae were challenged with bacterial biofilmed or clean surfaces and percent metamorphosis was determined. Ablated larvae were also assessed for cellular damage by applying fluorescently tagged FMRF-amide antibodies and observing the larvae by laser-scanning confocal microscopy. While the laser pulses caused extensive damage to the ASO and surrounding cells, they did not inhibit metamorphosis. We conclude that the ASO is not a required receptor site for cues that induce metamorphosis.


2021 ◽  
Vol 02 (05) ◽  
pp. 62-68
Author(s):  
Aziza Bakhtiyor Qizi Salokhiddinova ◽  

Eyes are organs of the visual system. The human eye is a sense organ that reacts to light and allows vision. It well known that the eye is a sensory organ, and while seeing protects us from external dangers, we perceive the external environment. That is why this part of the body is so important. Sight, whose main function is to help a person feel different things. Thanks to this member, many works of art have created. That is, writers wrote down what they saw with their own eyes. This article provides an in-depth analysis of the phrases in which these eye functions transferred in Japanese and Uzbek languages.


2021 ◽  
Author(s):  
Callum Teeling ◽  
Eleanor Gilbert ◽  
Siffreya Pedersen ◽  
Nathan Chrismas ◽  
Vengamanaidu Modepalli

The apical pole of eumetazoan ciliated larvae acts as a neurosensory structure and is principally composed of sensory-secretory cells. Cnidarians like the sea anemone Nematostella vectensis are the only non-bilaterian group to evolve ciliated larvae with a neural integrated sensory organ that is likely homologous to bilaterians. Here, we uncovered the molecular signature of the larval sensory organ in Nematostella by generating a transcriptome of the apical tissue. We characterised the cellular identity of the apical domain by integrating larval single-cell data with the apical transcriptome and further validated this through in-situ hybridisation. We discovered that the apical domain comprises a minimum of 6 distinct cell types, including apical cells, neurons, peripheral flask-shaped gland/secretory cells, and undifferentiated cells. By profiling the spatial expression of neuronal genes, we showed that the apical region has a unique neuronal signature distinct from the rest of the body. By combining the planula cilia proteome with the apical transcriptome data, we revealed the sheer complexity of the non-motile apical tuft. Overall, we present comprehensive spatial/molecular data on the Nematostella larval sensory organ and open new directions for elucidating the functional role of the apical organ and larval nervous system.


2021 ◽  
Vol 20 ◽  
pp. 165-173
Author(s):  
Charlotte M Mistretta ◽  
Robert M Bradley

Author(s):  
Patricia Kunz ◽  
Christina Lehmann ◽  
Christian Pohl

Cephalization is a major innovation of animal evolution and implies a synchronization of nervous system, mouth, and foregut polarization to align alimentary tract and sensomotoric system for effective foraging. However, the underlying integration of morphogenetic programs is poorly understood. Here, we show that invagination of neuroectoderm through de novo polarization and apical constriction creates the mouth opening in the Caenorhabditis elegans embryo. Simultaneously, all 18 juxta-oral sensory organ dendritic tips become symmetrically positioned around the mouth: While the two bilaterally symmetric amphid sensilla endings are towed to the mouth opening, labial and cephalic sensilla become positioned independently. Dendrite towing is enabled by the pre-polarized sensory amphid pores intercalating into the leading edge of the anteriorly migrating epidermal sheet, while apical constriction-mediated cell–cell re-arrangements mediate positioning of all other sensory organs. These two processes can be separated by gradual inactivation of the 26S proteasome activator, RPN-6.1. Moreover, RPN-6.1 also shows a dose-dependent requirement for maintenance of coordinated apical polarization of other organs with apical lumen, the pharynx, and the intestine. Thus, our data unveil integration of morphogenetic programs during the coordination of alimentary tract and sensory organ formation and suggest that this process requires tight control of ubiquitin-dependent protein degradation.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Marleen Klann ◽  
Magdalena Ines Schacht ◽  
Matthew Alan Benton ◽  
Angelika Stollewerk

Abstract Insects and other arthropods utilise external sensory structures for mechanosensory, olfactory, and gustatory reception. These sense organs have characteristic shapes related to their function, and in many cases are distributed in a fixed pattern so that they are identifiable individually. In Drosophila melanogaster, the identity of sense organs is regulated by specific combinations of transcription factors. In other arthropods, however, sense organ subtypes cannot be linked to the same code of gene expression. This raises the questions of how sense organ diversity has evolved and whether the principles underlying subtype identity in D. melanogaster are representative of other insects. Here, we provide evidence that such principles cannot be generalised, and suggest that sensory organ diversification followed the recruitment of sensory genes to distinct sensory organ specification mechanism. Results We analysed sense organ development in a nondipteran insect, the flour beetle Tribolium castaneum, by gene expression and RNA interference studies. We show that in contrast to D. melanogaster, T. castaneum sense organs cannot be categorised based on the expression or their requirement for individual or combinations of conserved sense organ transcription factors such as cut and pox neuro, or members of the Achaete-Scute (Tc ASH, Tc asense), Atonal (Tc atonal, Tc cato, Tc amos), and neurogenin families (Tc tap). Rather, our observations support an evolutionary scenario whereby these sensory genes are required for the specification of sense organ precursors and the development and differentiation of sensory cell types in diverse external sensilla which do not fall into specific morphological and functional classes. Conclusions Based on our findings and past research, we present an evolutionary scenario suggesting that sense organ subtype identity has evolved by recruitment of a flexible sensory gene network to the different sense organ specification processes. A dominant role of these genes in subtype identity has evolved as a secondary effect of the function of these genes in individual or subsets of sense organs, probably modulated by positional cues.


2021 ◽  
Author(s):  
Brian T. Nedved ◽  
Marnie L. Freckelton ◽  
Michael G. Hadfield

AbstractLarvae of many marine invertebrates bear an anteriorly positioned apical sensory organ (ASO) presumed to be the receptor for settlement- and metamorphosis-inducing environmental cues, based on its structure, position and observed larval behavior. Larvae of the polychaete Hydroides elegans are induced to settle by bacterial biofilms, which they explore with their ASO and surrounding anteroventral surfaces. A micro-laser was utilized to destroy the ASO and other anterior ciliary structures in competent larvae of H. elegans. After ablation, larvae were challenged with bacterial biofilmed or clean surfaces and percent metamorphosis was determined. Ablated larvae were also assessed for cellular damage by applying fluorescently tagged FMRF-amide antibodies and observing the larvae by laser-scanning confocal microscopy. While the laser pulses caused extensive damage to the ASO and surrounding cells, they did not inhibit metamorphosis. We conclude that the ASO is not a required receptor site for cues that induce metamorphosis.Summary StatementLarvae of the polychaete Hydroides elegans retain the capacity to sense biofilm cues and metamorphose despite removal of their apical sensory organs, the supposed sensors for settlement cues.


Sign in / Sign up

Export Citation Format

Share Document