glutamine metabolism
Recently Published Documents


TOTAL DOCUMENTS

1098
(FIVE YEARS 331)

H-INDEX

71
(FIVE YEARS 12)

Author(s):  
Hironori Bando ◽  
Yasuhiro Fukuda ◽  
Nina Watanabe ◽  
Jeje Temitope Olawale ◽  
Kentaro Kato

Toxoplasma gondii chronically infects the brain as latent cysts containing bradyzoites and causes various effects in the host. Recently, the molecular mechanisms of cyst formation in the mouse brain have been elucidated, but those in the human brain remain largely unknown. Here, we show that abnormal glutamine metabolism caused by both interferon-γ (IFN-γ) stimulation and T. gondii infection induce cyst formation in human neuroblastoma cells regardless of the anti-T. gondii host factor nitric oxide (NO) level or Indoleamine 2,3-dioxygenase-1 (IDO1) expression. IFN-γ stimulation promoted intracellular glutamine degradation in human neuronal cells. Additionally, T. gondii infection inhibited the mRNA expression of the host glutamine transporters SLC38A1 and SLC38A2. These dual effects led to glutamine starvation and triggered T. gondii stage conversion in human neuronal cells. Furthermore, these mechanisms are conserved in human iPSC-derived glutamatergic neurons. Taken together, our data suggest that glutamine starvation in host cells is an important trigger of T. gondii stage conversion in human neurons.


Author(s):  
Xiaozhe Fu ◽  
Kejin Li ◽  
Yinjie Niu ◽  
Qiang Lin ◽  
Hongru Liang ◽  
...  

Infectious spleen and kidney necrosis virus (ISKNV) is the causative agent of farmed fish disease that has caused huge economic losses in fresh and marine fish aquaculture. The redox state of cells is shaped by virus into a favorable microenvironment for virus replication and proliferation.


Life Sciences ◽  
2022 ◽  
pp. 120274
Author(s):  
Suntae Kim ◽  
Jang Su Jeon ◽  
Yong June Choi ◽  
Ga Hee Baek ◽  
Sang Kyum Kim ◽  
...  

2022 ◽  
Author(s):  
Mengzhen Wang ◽  
Fei Lu ◽  
Na Li ◽  
Wei Pan ◽  
Bo Tang

A homotypic cancer cell membrane camouflaged zeolitic imidazolate framework (ZIF)-based nanoagent with co-loading of two inhibitors has been developed, which could suppress the efflux of protons to induce intracellular acidic...


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Pengfei Yang ◽  
Xiangxia Luo ◽  
Jin Li ◽  
Tianyi Zhang ◽  
Xiaoling Gao ◽  
...  

Glutamine metabolism provides energy to tumor cells and also produces reactive oxygen species (ROS). Excessive accumulation of ROS can damage mitochondria and eventually lead to cell death. xCT (SLC7A11) is responsible for the synthesis of glutathione in order to neutralize ROS. In addition, mitophagy can remove damaged mitochondria to keep the cell alive. Ionizing radiation kills tumor cells by causing the accumulation of ROS, which subsequently induces nuclear DNA damage. With this in mind, we explored the mechanism of intracellular ROS accumulation induced by ionizing radiation and hypothesized new methods to enhance the effect of radiotherapy. We used MCF-7 breast cancer cells and HCT116 colorectal cancer cells in our study. The above-mentioned cells were irradiated with different doses of X-rays or carbon ions. Clone formation assays were used to detect cell proliferation, enzyme-linked immunosorbent assay (ELISA) detected ATP, and glutathione (GSH) production, while the expression of proteins was detected by Western blot and quantitative real-time PCR analysis. The production of ROS was detected by flow cytometry, and immunofluorescence was used to track mitophagy-related processes. Finally, BALB/C tumor-bearing nude mice were irradiated with X-rays in order to further explore the protein expression found in tumors with the use of immunohistochemistry. Ionizing radiation increased the protein expressions of ASCT2, GLS, and GLUD in order to upregulate the glutamine metabolic flux in tumor cells. This caused an increase in ATP secretion. Meanwhile, ionizing radiation inhibited the expression of the xCT (SLC7A11) protein and reduced the generation of glutathione, leading to excessive accumulation of intracellular ROS. The mitophagy inhibitor, or knockdown Parkin gene, is able to enhance the ionizing radiation-induced ROS production and increase nucleus DNA damage. This combined treatment can significantly improve the killing effect of radiation on tumor cells. We concluded that ionizing radiation could upregulate the glutamine metabolic flux and enhance ROS accumulation in mitochondria. Ionizing radiation also decreased the SLC7A11 expression, resulting in reduced GSH generation. Therefore, inhibition of mitophagy can increase ionizing radiation-induced cell death.


2021 ◽  
Author(s):  
Ni Zeng ◽  
Zhi-Peng Yan ◽  
Tao Liao ◽  
Jie-Ting Li ◽  
Yan Chen ◽  
...  

Abstract Objective: To investigate the interaction of infrapatellar fat pad/cartilage and related mechanisms in knee osteoarthritis (OA) using the metabolomics method.Method: Fat-conditioned media (FCM) of the infrapatellar fat pad from patients with OA were used to treat human OA chondrocytes. The extracellular metabolites of human OA chondrocytes were detected by nontargeted metabolic footprint analysis based on liquid chromatography and mass spectrometry (LC-MS). Then, the different metabolites were found, and the main metabolic pathways were explored, combined with bioinformatics methods.Results: After treatment with FCM for 48 h, the proliferation of human OA chondrocytes was slowed down, indicating that FCM had a certain inhibitory effect on the proliferation of human OA chondrocytes (P = 0.023). On the pattern diagram of principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA), after FCM treatment, the data sample areas were obviously separated, indicating that FCM can significantly affect the metabolic footprint of human OA chondrocytes. Through metabonomic identification, 131 different metabolites were screened after FCM treatment compared with before treatment. For 4 pathways in total, significantly different activity levels were discovered in pairwise comparisons: alanine, aspartate, and glutamate metabolism; citrate cycle (TCA cycle); arginine and proline metabolism; and phenylalanine metabolism.Conclusion: The infrapatellar fat pad aggravates OA chondrocyte injury and is involved in OA by disturbing the chondrocyte TCA cycle, amino acid metabolism, and glutamine metabolism, among others.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Kai Jiang ◽  
Ting Jiang ◽  
Yang Chen ◽  
Xinzhan Mao

Osteoarthritis (OA) had a high incidence in people over 65 years old, and there is currently no drug that could completely cure it. This study is aimed at studying the role of exosomes in regulating glutamine metabolism in the treatment of OA. First, we identified the exosomes extracted from the mouse OA model’s bone marrow mesenchymal stem cells (MSC). In vitro, compared with the control group, the cell apoptosis in the OA group increased, while the cell proliferation of the OA group was suppressed. After exosomal treatment, cell apoptosis and cell proliferation were reversed. Inflammatory factors (TNFα, IL-6), glutamine metabolic activity-related proteins (c-MYC, GLS1), glutamine, and GSH/GSSG were increased in the OA group. The overexpression of c-MYC reduced the therapeutic effect of exosomes. At the same time, we found that chondrocyte functional factors (collagen II, Aggrecan) were improved under the treatment of exosomes. However, oe-c-MYC reversed the therapeutic effect of exosomes. In vivo, we found that the running capacity of the mice in the OA group was reduced, and the cartilage tissue was severely damaged. In addition, TNFα, IL-6, and chondrocyte apoptosis increased, while the metabolism of collagen II, Aggrecan, and glutamate decreased in the OA group. After exosomal treatment, the mice’s exercise capacity, tissue damage, inflammation, and chondrocyte function were improved, and glutamate metabolism was increased. This study showed that exosomes regulated the level of chondrocyte glutamine metabolism by regulating c-MYC, thereby alleviating OA.


2021 ◽  
Vol 22 ◽  
Author(s):  
Haneen A . Basheer ◽  
Lina Elsalem ◽  
Anwar Salem ◽  
Artysha Tailor ◽  
Keith Hunter ◽  
...  

Background: The increased glutamine metabolism is a characteristic feature of cancer cells. The interconversion between glutamine and glutamate is catalyzed by two glutaminase isoforms, GLS1 and GLS2, which appear to have different roles in different types of cancer. We investigated for the first time the protein expression of GLS1 and GLS2, and their correlation with advanced clinicopathological parameters in head and neck cancers. Method: Consecutive slides from a tissue microarray comprised of 80 samples ranging from normal to metastatic, were stained immunohistochemically for GLS1, GLS2, HIF-1α or CD147. Following analysis by two expert pathologists we carried out statistical analysis of the scores. Results: GLS1 and GLS2 are upregulated at protein level in head and neck tumours compared to normal tissues and this increased expression correlated positively (GLS1) and negatively (GLS2) with tumor grade, indicating a shift of expression between GLS enzyme isoforms based on tumor differentiation. Increased expression of GLS1 was associated with high CD147 expression; and elevated GLS2 expression was associated with both high CD147 and high HIF-1α expressions. The correlation of the GLS1 and GLS2 with HIF-1α or CD147 was strongly associated with more advanced clinicopathological parameters. Conclusion: The increased expression of GLS1 and GLS2 may be explored as a new treatment for head and neck cancers.


Open Medicine ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 87-95
Author(s):  
Luming Jin ◽  
Chaoyang Chen ◽  
Lipeng Huang ◽  
Qingyu Sun ◽  
Liang Bu

Abstract Long noncoding RNA (lncRNA), specifically the upregulation of lncRNA NR2F1 antisense RNA 1 (NR2F1-AS1), has been involved in the progression of non-small cell lung cancer (NSCLC), but the mechanisms that underlie this remain unclear. In this study, the expression of NR2F1-AS1, miR-363-3p, and SOX4 was assessed in NSCLC cells. A loss-of-function assay was used to measure the tumorigenicity of NSCLC cells. The glycolysis and glutamine metabolism of NSCLC cells was also measured via extracellular acidification rate, consumption of glucose and glutamine, and production of lactate and ATP. The relationships among NR2F1-AS1, miR-363-3p, and SOX4 were detected via dual-luciferase reporter assay. HK-2, GLS1, and SOX4 levels were also analyzed. We found that both NSCLC tissues and cells had higher levels of NR2F1-AS1. Silencing of NR2F1-AS1 inhibited the tumorigenicity of cells in vitro and reduced the glycolysis and glutamine metabolism of NSCLC cells. Regarding its mechanism, NR2F1-AS1 positively regulated the SOX4 level by sponging miR-363-3p. Furthermore, miR-363-3p inhibition or SOX4 overexpression reversed the repressing role of sh-NR2F1-AS1 in the tumorigenicity of NSCLC cells. In summary, NR2F1-AS1 promotes the tumorigenicity of NSCLC cells by regulating miR-363-3p/SOX4.


Sign in / Sign up

Export Citation Format

Share Document