Rational Addiction with an Optimal Inventory: Theory and Evidence from Japanese Daily and Monthly Purchases

2014 ◽  
pp. 7-28 ◽  
Author(s):  
Junmin Wan
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Meiqin Suo ◽  
Fuhui Du ◽  
Yongping Li ◽  
Tengteng Kong ◽  
Jing Zhang

In this study, an inexact inventory theory-based water resources distribution (IIWRD) method is advanced and applied for solving the problem of water resources distribution from Yuecheng Reservoir to agricultural activities, in the Zhanghe River Basin, China. In the IIWRD model, the techniques of inventory model, inexact two-stage stochastic programming, and interval-fuzzy mathematics programming are integrated. The water diversion problem of Yuecheng Reservoir is handled under multiple uncertainties. Decision alternatives for water resources allocation under different inflow levels with a maximized system benefit and satisfaction degree are provided for water resources management in Yuecheng Reservoir. The results show that the IIWRD model can afford an effective scheme for solving water distribution problems and facilitate specific water diversion of a reservoir for managers under multiple uncertainties and a series of policy scenarios.


2002 ◽  
Vol 11 (6) ◽  
pp. 485-491 ◽  
Author(s):  
Badi H. Baltagi ◽  
James M. Griffin

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
M. Q. Suo ◽  
Y. P. Li ◽  
G. H. Huang ◽  
Y. R. Fan ◽  
Z. Li

An inventory-theory-based inexact multistage stochastic programming (IB-IMSP) method is developed for planning water resources systems under uncertainty. The IB-IMSP is based on inexact multistage stochastic programming and inventory theory. The IB-IMSP cannot only effectively handle system uncertainties represented as probability density functions and discrete intervals but also efficiently reflect dynamic features of system conditions under different flow levels within a multistage context. Moreover, it can provide reasonable transferring schemes (i.e., the amount and batch of transferring as well as the corresponding transferring period) associated with various flow scenarios for solving water shortage problems. The applicability of the proposed IB-IMSP is demonstrated by a case study of planning water resources management. The solutions obtained are helpful for decision makers in not only identifying different transferring schemes when the promised water is not met, but also making decisions of water allocation associated with different economic objectives.


Author(s):  
Richard M. Feldman ◽  
Ciriaco Valdez-Flores
Keyword(s):  

2015 ◽  
Vol 40 (2) ◽  
pp. 163-190 ◽  
Author(s):  
Concetta Castiglione ◽  
Davide Infante

Sign in / Sign up

Export Citation Format

Share Document