An Optimization Model for the Inland Repositioning of Empty Containers

2015 ◽  
Author(s):  
Alessandro Olivo ◽  
Massimo Di Francesco ◽  
Paola Zuddas
2012 ◽  
Vol 220-223 ◽  
pp. 2678-2683
Author(s):  
Bin Wang ◽  
Tao Yang

The paper dose research about the optimization of container shipping of sea –carriage for meeting the goods transport requirement by use of integer programming. Both laden and empty containers are combined into a system. In particular, the effect of special laden container shipping capacity on the shipping plan is investigated. In the model, the objective function is to maximize the total profit of container shipping. The profit caused by laden container shipping minus the cost caused by both laden and empty container shipping equal to the total profit. The constraints to the model include meeting the need of both laden and empty containers, shipping limit to both common and special laden containers , the number of empty container supported. Lingo9.0 is used to solve the model and shipping methods in varied parameters are shown by simulation. The aim of the paper is to provide a reasonable plan of container shipping of sea-carriage, so the container shipping cost of a shipping company can be reduced and the its profit made by container shipping are maximized.


2013 ◽  
Vol 411-414 ◽  
pp. 2715-2720
Author(s):  
Bin Wang ◽  
Tao Yang

The paper dose research about the optimization of container shipping of sea carriage for meeting the goods transport requirement by use of stochastic programming. Both laden and empty containers are combined into a system. In particular, the effect of special laden container shipping capacity on the shipping plan is investigated. In the model, the objective function is to maximize the total profit of container shipping. The profit caused by laden container shipping minus the cost caused by both laden and empty container shipping equal to the total profit. The constraints to the model include meeting the need of both laden and empty containers, shipping limit to both common and special laden containers, the number of empty container supported. The number of empty containers is stochastic and the model is transmitted to an integer programming. Lingo9.0 is used to solve the model and shipping methods in varied parameters are shown by simulation. The aim of the paper is to provide a reasonable plan of container shipping of sea-carriage, so the container shipping cost of a shipping company can be reduced and the its profit made by container shipping are maximized.


2015 ◽  
pp. 84-108
Author(s):  
Alessandro Olivo ◽  
Massimo Di Francesco ◽  
Paola Zuddas

2013 ◽  
Vol 15 (3) ◽  
pp. 309-331 ◽  
Author(s):  
Alessandro Olivo ◽  
Massimo Di Francesco ◽  
Paola Zuddas

Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 300
Author(s):  
Hengzhen Zhang ◽  
Lihua Lu ◽  
Xiaofeng Wang

Due to the special role of empty containers in the container transportation process, empty container repositioning is a focal point in the shipping industry. For this problem, highly efficient and feasible optimization models are critical in improving the benefit for shipping companies and increasing their market competitiveness. Operational decisions are affected by tactical ones. Aimed at this point, we propose a tactical and operational cooperative empty container repositioning optimization model. To cut the search space and obtain the optimal solution quickly, several initial solutions generation rules are extracted, based on business flow. Furthermore, the reachable shipping distance may change when the calling sequence is different. An algorithm which calculates the reachable shipping distance matrix between ports is presented to solve this problem. Simulated cases are used to test the proposed model and algorithm. The results show that the cases can cope with the tactical and operational cooperative empty container repositioning optimization model. Moreover, some interesting conclusions also are deduced about the relationships among number of calling ports, total profits, leasing cost, calling port fee, number of Empty Containers Repositioned (ECR), and laden containers. All these can guide and assist the various decisions to be made. According to the homepage of Symmetry, its subject areas include Mathematics, Computer Science, Theory, and Methods. Their branches include information theory, computer-aided design, and so on. The topic of our paper is to solve this engineering application problem by using a mathematical optimization model and computer methods. That is, applying mathematical theory and computer methods to make decision results for the empty container repositioning problem in the shipping industry. It has certain economic value and practical significance. Obviously, it is consistent with the theme of Symmetry.


1984 ◽  
Author(s):  
M. A. Montazer ◽  
Colin G. Drury
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document