A case study of modelling preventive maintenance of a production plant using subjective data

1998 ◽  
Vol 49 (3) ◽  
pp. 210-219 ◽  
Author(s):  
A H Christer ◽  
W Wang ◽  
J Sharp ◽  
R Baker
1998 ◽  
Vol 49 (3) ◽  
pp. 210 ◽  
Author(s):  
A. H. Christer ◽  
W. Wang ◽  
J. Sharp ◽  
R. Baker

1998 ◽  
Vol 49 (3) ◽  
pp. 210-219 ◽  
Author(s):  
A H Christer ◽  
W Wang ◽  
J Sharp ◽  
R Baker

Author(s):  
Antonio Sánchez Herguedas ◽  
Adolfo Crespo Márquez ◽  
Francisco Rodrigo Muñoz

Abstract This paper describes the optimization of preventive maintenance (PM) over a finite planning horizon in a semi-Markov framework. In this framework, the asset may be operating, and providing income for the asset owner, or not operating and undergoing PM, or not operating and undergoing corrective maintenance following failure. PM is triggered when the asset has been operating for τ time units. A number m of transitions specifies the finite horizon. This system is described with a set of recurrence relations, and their z-transform is used to determine the value of τ that maximizes the average accumulated reward over the horizon. We study under what conditions a solution can be found, and for those specific cases the solution τ* is calculated. Despite the complexity of the mathematical solution, the result obtained allows the analyst to provide a quick and easy-to-use tool for practical application in many real-world cases. To demonstrate this, the method has been implemented for a case study, and its accuracy and practical implementation were tested using Monte Carlo simulation and direct calculation.


2012 ◽  
Vol 232 ◽  
pp. 609-613
Author(s):  
Ali Baghernejad ◽  
Mahmood Yaghoubi

In the present study, a specific and simple second law based exergoeconomic model with instant access to the production costs is introduced. The model is generalized for a case study of Shiraz solar thermal power plant with parabolic collectors for nominal power supply of 500 kW. Its applications include the evaluation of utility costs such as products or supplies of production plant, the energy costs between process operations of an energy converter such as production of an industry. Also attempt is made to minimize objective function including investment cost of the equipments and cost of exergy destruction for finding optimum operating condition for such plant.


2017 ◽  
Vol 20 (1) ◽  
pp. 19-22
Author(s):  
Róbert Galamboš ◽  
Jana Galambošová ◽  
Vladimír Rataj ◽  
Miroslav Kavka

Abstract Presented paper deals with the topic of preventive maintenance. A decision support system was designed, incorporating historical as well as forecast information to calculate the time remaining to preventive maintenance. The designed system optimizes maintenance costs without any further investment and running costs. An algorithm of the designed system is introduced and a case study of its implementation is described in the paper.


2021 ◽  
Vol 25 (8) ◽  
pp. 1477-1482
Author(s):  
O.F. Odeyinka ◽  
F.O. Ogunwolu ◽  
O.P. Popoola ◽  
T.O. Oyedokun

Process capability analysis combines statistical tools and control charts with good engineering judgment to interpret and analyze the data representing a process. This work analyzes the process capability of a polypropylene bag producing company. The case study organization uses two plants for production and data was collected over a period of nine months for this study. Analysis showed that the output spread of plant 1 was greater than the specification interval spread which implies poor capability. There are non-conforming parts below the Lower Specification Limit (LSL: 500,000 metres) and above the Upper Specification Limit (USL: 600,000 metres) and that the output requires improvement. Similarly, the capability analysis of plant 2 shows that the overall output spread is greater than the specification interval spread (poor capability). The output centre in the specification and overall interval are vertically aligned, thus specifying that the output from plant 2 is also process centered and requires improvement. Recommendations were made to improve the outputs from each production plant.


Sign in / Sign up

Export Citation Format

Share Document